LGG_2024v15n3

Legume Genomics and Genetics 2024, Vol.15, No.3, 105-117 http://cropscipublisher.com/index.php/lgg 116 Rodriguez-Leal D., Lemmon Z., Man J., Bartlett M., and Lippman Z., 2017, Engineering quantitative trait variation for crop improvement by genome editing, Cell, 171: 470-480. https://doi.org/10.1016/j.cell.2017.08.030 Roy S., Liu W., Nandety R., Crook A., Mysore K., Pislariu C., Frugoli J., Dickstein R., and Udvardi M., 2019, Celebrating 20 years of genetic discoveries in legume nodulation and symbiotic nitrogen fixation, Plant Cell, 32: 15-41. https://doi.org/10.1105/tpc.19.00279 Russell J., Weldon S., Smith A., Kim K., Hu Y., Łukasik P., Doll S., Anastopoulos I., Novin M., and Oliver K., 2013, Uncovering symbiont‐driven genetic diversity across North American pea aphids, Molecular Ecology, 22(7): 2045-2059. https://doi.org/10.1111/mec.12211 Sironi M., Cagliani R., Forni D., and Clerici M., 2015, Evolutionary insights into host-pathogen interactions from mammalian sequence data, Nature Reviews, Genetics, 16: 224-236. https://doi.org/10.1038/nrg3905 Smýkal P., Aubert G., Burstin J., Coyne C., Ellis N., Flavell A., Ford R., Hýbl M., Macas J., Neumann P., Mcphee K., Redden R., Rubiales D., Weller J., and Warkentin T., 2012, Pea (Pisum sativumL.) in the genomic era, Agronomy, 2: 74-115. https://doi.org/10.3390/AGRONOMY2020074 Takagi H., Abe A., Yoshida K., Kosugi S., Natsume S., Mitsuoka C., Uemura A., Utsushi H., Tamiru M., Takuno S., Innan H., Cano L., Kamoun S., and Terauchi R., 2013, QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations, The Plant Journal, 74(1): 174-183. https://doi.org/10.1111/tpj.12105 Tayeh N., Aluome C., Falque M., Jacquin F., Klein A., Chauveau A., Bérard A., Houtin H., Rond C., Kreplak J., Boucherot K., Martin C., Baranger A., Pilet-Nayel M., Warkentin T., Brunel D., Marget P., Paslier M., Aubert G., and Burstin J., 2015, Development of two major resources for pea genomics: the GenoPea 13.2 K SNP Array and a high-density, high-resolution consensus genetic map, The Plant Journal, 84(6): 1257-1273. https://doi.org/10.1111/tpj.13070 Tayeh N., Aubert G., Pilet-Nayel M., Lejeune-Hénaut I., Warkentin T., and Burstin J., 2015, Genomic tools in pea breeding programs: status and perspectives, Frontiers in Plant Science, 6: 1037. https://doi.org/10.3389/fpls.2015.01037 Tayeh N., Klein A., Paslier M., Jacquin F., Houtin H., Rond C., Chabert-Martinello M., Magnin-Robert J., Marget P., Aubert G., and Burstin J., 2015, Genomic prediction in pea: effect of marker density and training population size and composition on prediction accuracy, Frontiers in Plant Science, 6: 941. https://doi.org/10.3389/fpls.2015.00941 Tian D., Wang P., Tang B., Teng X., Li C., Liu X., Zou D., Song S., and Zhang Z., 2019, GWAS Atlas: a curated resource of genome-wide variant-trait associations in plants and animals, Nucleic Acids Research, 48: D927-D932. https://doi.org/10.1093/nar/gkz828 Turner-Hissong S., Mabry M., Beissinger T., Ross-Ibarra J., and Pires J., 2019, Evolutionary insights into plant breeding, Current Opinion in Plant Biology, 54: 93-100. https://doi.org/10.31220/osf.io/akdt8 Varshney R., Roorkiwal M., and Sorrells M., 2017, Genomic selection for crop improvement, Crop Science, 49: 1-12. https://doi.org/10.1007/978-3-319-63170-7 Wan L., Wang Z., Tang M., Hong D., Sun Y., Ren J., Zhang N., and Zeng H., 2021, CRISPR-Cas9 gene editing for fruit and vegetable crops: strategies and prospects, Horticulturae, 7(7): 193. https://doi.org/10.3390/HORTICULTURAE7070193 Wang J., Sun P., Li Y., Liu Y., Yu J., Ma X., Sun S., Yang N., Xia R., Lei T., Liu X., Jiao B., Xing Y., Ge W., Wang L., Wang Z., Song X., Yuan M., Guo D., Zhang L., Zhang J., Jin D., Chen W., Pan Y., Liu T., Jin L., Sun J., Yu J., Cheng R., Duan X., Shen S., Qin J., Zhang M., Paterson A., and Wang X., 2017, Hierarchically aligning 10 legume genomes establishes a family-level genomics platform, Plant Physiology, 174: 284-300. https://doi.org/10.1104/pp.16.01981 Wang Q., Liu J., and Zhu H., 2018, Genetic and molecular mechanisms underlying symbiotic specificity in legume-rhizobium interactions, Frontiers in Plant Science, 9: 313. https://doi.org/10.3389/fpls.2018.00313 Yang J., Jiang H., Yeh C., Yu J., Jeddeloh J., Nettleton D., and Schnable P., 2015, Extreme-phenotype genome-wide association study (XP-GWAS): a method for identifying trait-associated variants by sequencing pools of individuals selected from a diversity panel, The Plant Journal, 84(3): 587-596. https://doi.org/10.1111/tpj.13029 Zhukov V., Zhernakov A., Sulima A., Kulaeva O., Kliukova M., Afonin A., Shtark O., and Tikhonovich I., 2021, Association study of symbiotic genes in pea (Pisum sativumL.) cultivars grown in symbiotic conditions, Agronomy, 11(11): 2368. https://doi.org/10.3390/agronomy11112368

RkJQdWJsaXNoZXIy MjQ4ODYzNA==