LGG_2024v15n3

Legume Genomics and Genetics 2024, Vol.15, No.3, 105-117 http://cropscipublisher.com/index.php/lgg 115 Bourion V., Heulin-Gotty K., Aubert V., Tisseyre P., Chabert-Martinello M., Pervent M., Delaitre C., Vile D., Siol M., Duc G., Brunel B., Burstin J., and Lepetit M., 2018, Co-inoculation of a pea core-collection with diverse rhizobial strains shows competitiveness for nodulation and efficiency of nitrogen fixation are distinct traits in the interaction, Frontiers in Plant Science, 8: 2249. https://doi.org/10.3389/fpls.2017.02249 Burstin J., Salloignon P., Chabert-Martinello M., Magnin-Robert J., Siol M., Jacquin F., Chauveau A., Pont C., Aubert G., Delaitre C., Truntzer C., and Duc G., 2015, Genetic diversity and trait genomic prediction in a pea diversity panel, BMC Genomics, 16: 1-17. https://doi.org/10.1186/s12864-015-1266-1 Cortinovis G., Frascarelli G., Vittori V., and Papa R., 2020, Current state and perspectives in population genomics of the common bean, Plants, 9(3): 330. https://doi.org/10.3390/plants9030330 Hellwig T., Abbo S., and Ophir R., 2022, Phylogeny and disparate selection signatures suggest two genetically independent domestication events in pea (Pisum L.), The Plant Journal, 110: 419-439. https://doi.org/10.1111/tpj.15678 Hradilová I., Trněný O., Válková M., Cechova M., Janska A., Prokešová L., Aamir K., Krezdorn N., Rotter B., Winter P., Varshney R., Soukup A., Bednář P., Hanáček P., and Smýkal P., 2017, A combined comparative transcriptomic, metabolomic, and anatomical analyses of two key domestication traits: pod dehiscence and seed dormancy in pea (Pisumsp.), Frontiers in Plant Science, 8: 542. https://doi.org/10.3389/fpls.2017.00542 Jaganathan D., Ramasamy K., Sellamuthu G., Jayabalan S., and Venkataraman G., 2018, CRISPR for crop improvement: an update review, Frontiers in Plant Science, 9: 985. https://doi.org/10.3389/fpls.2018.00985 Klein A., Houtin H., Rond-Coissieux C., Naudet-Huart M., Touratier M., Marget P., and Burstin J., 2020, Meta-analysis of QTL reveals the genetic control of yield-related traits and seed protein content in pea, Scientific Reports, 10(1): 15925. https://doi.org/10.1038/s41598-020-72548-9 Kouchi H., Imaizumi-Anraku H., Hayashi M., Hakoyama T., Nakagawa T., Umehara Y., Suganuma N., and Kawaguchi M., 2010, How many peas in a pod? legume genes responsible for mutualistic symbioses underground, Plant and Cell Physiology, 51: 1381-1397. https://doi.org/10.1093/pcp/pcq107 Kreplak J., Madoui M., Cápal P., Novák P., Labadie K., Aubert G., Bayer P., Gali K., Syme R., Main D., Klein A., Bérard A., Vrbová I., Fournier C., d’Agata L., Belser C., Berrabah W., Toegelová H., Milec Z., Vrána J., Lee H., Kougbeadjo A., Térézol M., Huneau C., Turo C., Mohellibi N., Neumann P., Falque M., Gallardo K., McGee R., Tar’an B., Bendahmane A., Aury J., Batley J., Paslier M., Ellis N., Warkentin T., Coyne C., Salse J., Edwards D., Lichtenzveig J., Macas J., Doležel J., Wincker P., and Burstin J., 2019, A reference genome for pea provides insight into legume genome evolution, Nature Genetics, 51: 1411-1422. https://doi.org/10.1038/s41588-019-0480-1 Liu Q., Yang F., Zhang J., Liu H., Rahman S., Islam S., Ma W., and She M., 2021, Application of CRISPR/Cas9 in crop quality improvement, International Journal of Molecular Sciences, 22(8): 4206. https://doi.org/10.3390/ijms22084206 Macas J., Neumann P., and Navrátilová A., 2007, Repetitive DNA in the pea (Pisum sativumL.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula, BMC Genomics, 8: 427-427. https://doi.org/10.1186/1471-2164-8-427 Nouhaud P., Gautier M., Gouin A., Jaquiéry J., Peccoud J., Legeai F., Mieuzet L., Smadja C., Lemaitre C., Vitalis R., and Simon J., 2018, Identifying genomic hotspots of differentiation and candidate genes involved in the adaptive divergence of pea aphid host races, Molecular Ecology, 27: 3287-3300. https://doi.org/10.1111/mec.14799 Olsen K., and Wendel J., 2013, A bountiful harvest: genomic insights into crop domestication phenotypes, Annual Review of Plant Biology, 64: 47-70. https://doi.org/10.1146/annurev-arplant-050312-120048 Pavan S., Delvento C., Nazzicari N., Ferrari B., D’Agostino N., Taranto F., Lotti C., Ricciardi L., and Annicchiarico P., 2022, Merging genotyping-by-sequencing data from two ex situ collections provides insights on the pea evolutionary history, Horticulture Research, 9: uhab062. https://doi.org/10.1093/hr/uhab062 Rana J., Rana M., Sharma V., Nag A., Chahota R., and Sharma T., 2017, Genetic diversity and structure of pea (Pisum sativum L.) germplasm based on morphological and SSR markers, Plant Molecular Biology Reporter, 35: 118-129. https://doi.org/10.1007/s11105-016-1006-y Remigi P., Remigi P., Remigi P., Zhu J., Zhu J., Young J., Masson-Boivin C., and Masson-Boivin C., 2016, Symbiosis within symbiosis: evolving nitrogen-fixing legume symbionts, Trends in Microbiology, 24(1): 63-75. https://doi.org/10.1016/j.tim.2015.10.007 Rispail N., Wohor O., Osuna-Caballero S., Barilli E., and Rubiales D., 2023, Genetic diversity and population structure of a wide Pisumspp. core collection, International Journal of Molecular Sciences, 24(3): 2470. https://doi.org/10.3390/ijms24032470

RkJQdWJsaXNoZXIy MjQ4ODYzNA==