Legume Genomics and Genetics 2024, Vol.15, No.3, 93-104 http://cropscipublisher.com/index.php/lgg 103 Muehlbauer F., Kaiser W., and Simon C., 2004, Potential for wild species in cool season food legume breeding, Euphytica, 73: 109-114. https://doi.org/10.1007/BF00027187. Muñoz N., Liu A., Kan L., Li M., and Lam H., 2017, Potential uses of wild germplasms of grain legumes for crop improvement, International Journal of Molecular Sciences, 18(2): 328. https://doi.org/10.3390/ijms18020328. Nawaz M., Lin X., Chan T., Ham J., Shin T., Ercişli S., Golokhvast K., Lam H., and Chung G., 2020, Korean wild soybeans (Glycine soja Sieb and Zucc.): geographic distribution and germplasm conservation, Agronomy, 10(2): 214. https://doi.org/10.3390/agronomy10020214. Parker T., Lo S., and Gepts P., 2021, Pod shattering in grain legumes: emerging genetic and environment-related patterns, The Plant Cell, 33(2): 179-199. https://doi.org/10.1093/plcell/koaa025. Parker T., Teran J., Palkovic A., Jernstedt J., and Gepts P., 2019, Pod indehiscence is a domestication and aridity resilience trait in common bean, The New Phytologist, 225(1): 558-570. https://doi.org/10.1111/nph.16164. Pratap A., Das A., Kumar S., and Gupta S., 2021, Current perspectives on introgression breeding in food legumes, Frontiers in Plant Science, 11: 589189. https://doi.org/10.3389/fpls.2020.589189. Rajpal V., Singh A., Kathpalia R., Thakur R., Khan M., Pandey A., Hamurcu M., and Raina S., 2023, The prospects of gene introgression from crop wild relatives into cultivated lentil for climate change mitigation, Frontiers in Plant Science, 14: 1127239. https://doi.org/10.3389/fpls.2023.1127239. Rendón-Anaya M., Montero-Vargas J., Saburido-Álvarez S., Vlasova A., Capella-Gutierrez S., Ordaz-Ortíz J., Aguilar O., Vianello-Brondani R., Santalla M., Delaye L., Gabaldón T., Gepts P., Winkler R., Guigó R., Delgado-Salinas A., and Herrera-Estrella A., 2017, Genomic history of the origin and domestication of common bean unveils its closest sister species, Genome Biology, 18: 1-17. https://doi.org/10.1186/s13059-017-1190-6. Rodriguez C., Carlsson G., Englund J., Flöhr A., Pelzer E., Jeuffroy M., Makowski D., and Jensen E., 2020, Grain legume-cereal intercropping enhances the use of soil-derived and biologically fixed nitrogen in temperate agroecosystems, A Meta-analysis, European Journal of Agronomy, 118: 126077. https://doi.org/10.1016/j.eja.2020.126077. Roy S., Liu W., Nandety R., Crook A., Mysore K., Pislariu C., Frugoli J., Dickstein R., and Udvardi M., 2020, Celebrating 20 years of genetic discoveries in legume nodulation and symbiotic nitrogen fixation, The Plant Cell, 32(1): 15-41. https://doi.org/10.1105/tpc.19.00279. Schaefer H., Hechenleitner P., Santos‐Guerra A., Sequeira M., Pennington R., Kenicer G., and Carine M., 2012, Systematics, biogeography, and character evolution of the legume tribe Fabeae with special focus on the middle-Atlantic island lineages, BMC Evolutionary Biology, 12: 250-250. https://doi.org/10.1186/1471-2148-12-250. Sharma S., Upadhyaya H., Varshney R., and Gowda C., 2013, Pre-breeding for diversification of primary gene pool and genetic enhancement of grain legumes, Frontiers in Plant Science, 4: 309. https://doi.org/10.3389/fpls.2013.00309. Singh G., Gudi S.A., Upadhyay P., Shekhawat P., Nayak G., Goyal L., Kumar D., Kumar P., Kamboj A., Thada A., Shekhar S., Koli G., Dp M., Halladakeri P., Kaur R., Kumar S., Saini P., Singh I., and Ayoubi H., 2022, Unlocking the hidden variation from wild repository for accelerating genetic gain in legumes, Frontiers in Plant Science, 13: 1035878. https://doi.org/10.3389/fpls.2022.1035878. Smýkal P., Coyne C., Ambrose M., Maxted N., Schaefer H., Blair M., Berger J., Greene S., Nelson M., Besharat N., Vymyslický T., Toker C., Saxena R., Roorkiwal M., Pandey M., Hu J., Li Y., Wang L., Guo Y., Qiu L., Redden R., and Varshney R., 2015, Legume crops phylogeny and genetic diversity for science and breeding, Critical Reviews in Plant Sciences, 34: 104-143. https://doi.org/10.1080/07352689.2014.897904. Varshney R., Thudi M., Pandey M., Tardieu F., Ojiewo C., Vadez V., Whitbread A., Siddique K., Nguyen H., Carberry P., and Bergvinson D., 2018, Accelerating genetic gains in legumes for the development of prosperous smallholder agriculture: integrating genomics, phenotyping, systems modelling and agronomy, Journal of Experimental Botany, 69(13): 3293-3312. https://doi.org/10.1093/jxb/ery088. Velzen R., Holmer R., Bu F., Rutten L., Zeijl A., Liu W., Santuari L., Cao Q., Sharma T., Shen D., Roswanjaya Y., Wardhani T., Kalhor M., Jansen J., Hoogen J., Güngör B., Hartog M., Hontelez J., Verver J., Yang W., Schijlen E., Repin R., Schilthuizen M., Schranz M., Heidstra R., Miyata K., Fedorova E., Kohlen W., Bisseling T., Smit S., and Geurts R., 2018, Comparative genomics of the nonlegume Parasponia reveals insights into evolution of nitrogen-fixing rhizobium symbioses, Proceedings of the National Academy of Sciences of the United States of America, 115: E4700-E4709. https://doi.org/10.1073/pnas.1721395115. Wang J., Sun P., Li Y., Liu Y., Yu J., Ma X., Sun S., Yang N., Xia R., Lei T., Liu X., Jiao B., Xing Y., Ge W., Wang L., Wang Z., Song X., Yuan M., Guo D., Zhang L., Zhang J., Jin D., Chen W., Pan Y., Liu T., Jin L., Sun J., Yu J., Cheng R., Duan X., Shen S., Qin J., Zhang M., Paterson A., and Wang X., 2017, Hierarchically aligning 10 legume genomes establishes a family-level genomics platform, Plant Physiology, 174: 284-300. https://doi.org/10.1104/pp.16.01981.
RkJQdWJsaXNoZXIy MjQ4ODYzNA==