Legume Genomics and Genetics 2024, Vol.15, No.3, 93-104 http://cropscipublisher.com/index.php/lgg 102 Cannon S., McKain M., Harkess A., Nelson M., Dash S., Deyholos M., Peng Y., Joyce B., Stewart C., Rolf M., Kutchan T., Tan X., Chen C., Zhang Y., Carpenter E., Wong G., Doyle J., and Leebens-Mack J., 2015, Multiple polyploidy events in the early radiation of nodulating and nonnodulating legumes, Molecular Biology and Evolution, 32(1): 193-210. https://doi.org/10.1093/molbev/msu296. Centeno-González N., Martínez-Cabrera H., Porras-Muzquiz H., and Estrada-Ruiz E., 2021, Late Campanian fossil of a legume fruit supports Mexico as a center of Fabaceae radiation, Communications Biology, 4(1): 41. https://doi.org/10.1038/s42003-020-01533-9. Choi H., Mun J., Kim D., Zhu H., Baek J., Mudge J., Roe B., Ellis N., Doyle J., Kiss G., Young N., and Cook D., 2004, Estimating genome conservation between crop and model legume species, Proceedings of the National Academy of Sciences of the United States of America, 101(43): 15289-15294. https://doi.org/10.1073/PNAS.0402251101. Ferreira H., Pinto E., and Vasconcelos M., 2021, Legumes as a cornerstone of the transition toward more sustainable agri-food systems and diets in Europe, Frontiers in Sustainable Food Systems, 5: 694121. https://doi.org/10.3389/fsufs.2021.694121. Fuller D., 2007, Contrasting patterns in crop domestication and domestication rates: recent archaeobotanical insights from the old world, Annals of Botany, 100: 903-924. https://doi.org/10.1093/aob/mcm048. Guo X., Castillo-Ramírez S., González V., Bustos P., Fernández-Vázquez J., Santamaría R., Arellano J., Cevallos M., and Dávila G., 2007, Rapid evolutionary change of common bean (Phaseolus vulgaris L) plastome, and the genomic diversification of legume chloroplasts, BMC Genomics, 8: 228. https://doi.org/10.1186/1471-2164-8-228. Hradilová I., Trněný O., Válková M., Cechova M., Janska A., Prokešová L., Aamir K., Krezdorn N., Rotter B., Winter P., Varshney R., Soukup A., Bednář P., Hanáček P., and Smýkal P., 2017, A combined comparative transcriptomic, metabolomic, and anatomical analyses of two key domestication traits: pod dehiscence and seed dormancy in pea (Pisumsp.), Frontiers in Plant Science, 8: 542. https://doi.org/10.3389/fpls.2017.00542. Jan N., Rather A., John R., Chaturvedi P., Ghatak A., Weckwerth W., Zargar S., Mir R., Khan M., and Mir R., 2022, Proteomics for abiotic stresses in legumes: present status and future directions, Critical Reviews in Biotechnology, 43: 171-190. https://doi.org/10.1080/07388551.2021.2025033. Kebede E., 2021, Contribution, utilization, and improvement of legumes-driven biological nitrogen fixation in agricultural systems, Frontiers in Sustainable Food Systems, 5: 767998. https://doi.org/10.3389/fsufs.2021.767998. Koenen E., Ojeda D., Bakker F., Wieringa J., Kidner C., Hardy O., Pennington R., Herendeen P., Bruneau A., and Hughes C., 2020, The origin of the legumes is a complex paleopolyploid phylogenomic tangle closely associated with the cretaceous-paleogene (K-Pg) mass extinction event, Systematic Biology, 70: 508-526. https://doi.org/10.1093/sysbio/syaa041. Koenen E., Ojeda D., Steeves R., Migliore J., Bakker F., Wieringa J., Kidner C., Hardy O., Pennington R., Bruneau A., and Hughes C., 2019, Large‐scale genomic sequence data resolve the deepest divergences in the legume phylogeny and support a near‐simultaneous evolutionary origin of all six subfamilies, The New Phytologist, 225: 1355-1369. https://doi.org/10.1111/nph.16290. Kreplak J., Madoui M., Cápal P., Novák P., Labadie K., Aubert G., Bayer P., Gali K., Syme R., Main D., Klein A., Berard A., Vrbová I., Fournier C., d’Agata L., Belser C., Berrabah W., Toegelová H., Milec Z., Vrána J., Lee H., Kougbeadjo A., Terezol M., Huneau C., Turo C., Mohellibi N., Neumann P., Falque M., Gallardo K., McGee R., Tar’an B., Bendahmane A., Aury J., Batley J., Paslier M., Ellis N., Warkentin T., Coyne C., Salse J., Edwards D., Lichtenzveig J., Macas J., Doležel J., Wincker P., and Burstin J., 2019, A reference genome for pea provides insight into legume genome evolution, Nature Genetics, 51: 1411-1422. https://doi.org/10.1038/s41588-019-0480-1. Lu S., Dong L., Fang C., Liu S., Kong L., Cheng Q., Chen L., Su T., Nan H., Zhang D., Zhang L., Wang Z., Yang Y., Yu D., Liu X., Yang Q., Lin X., Tang Y., Zhao X., Yang X., Tian C., Xie Q., Li X., Yuan X., Tian Z., Liu B., Weller J., and Kong F., 2020, Stepwise selection on homeologous PRR genes controlling flowering and maturity during soybean domestication, Nature Genetics, 52: 428-436. https://doi.org/10.1038/s41588-020-0604-7. Maphosa Y., and Jideani V., 2017, The role of legumes in human nutrition, Functional Food-improve Health through Adequate Food, 1: 13. https://doi.org/10.5772/INTECHOPEN.69127. Marx H., Minogue C., Jayaraman D., Richards A., Kwiecien N., Siahpirani A., Rajasekar S., Maeda J., Garcia K., Valle-Echevarria A., Volkening J., Westphall M., Roy S., Sussman M., Ane J., and Coon J., 2016, A proteomic atlas of the legume Medicago truncatula and its nitrogen-fixing endosymbiont Sinorhizobium meliloti, Nature Biotechnology, 34: 1198-1205. https://doi.org/10.1038/nbt.3681. Mousavi-Derazmahalleh M., Bayer P., Hane J., Valliyodan B., Nguyen H., Nelson M., Erskine W., Varshney R., Papa R., and Edwards D., 2018, Adapting legume crops to climate change using genomic approaches, Plant, Cell and Environment, 42: 6-19. https://doi.org/10.1111/pce.13203.
RkJQdWJsaXNoZXIy MjQ4ODYzNA==