LGG_2024v15n1

Legume Genomics and Genetics 2024, Vol.15, No.1, 37-44 http://cropscipublisher.com/index.php/lgg 44 Fisher K., Buskirk S., Vignogna R., Marad D., and Lang G., 2018, Adaptive genome duplication affects patterns of molecular evolution in Saccharomyces cerevisiae, PLoS Genetics, 14(5): e1007396. https://doi.org/10.1371/journal.pgen.1007396 Hoek M., and Hogeweg P., 2009, Metabolic adaptation after whole genome duplication,Molecular Biology and Evolution, 26(11): 2441-2453. https://doi.org/10.1093/molbev/msp160 Hofberger J., Hofberger J., Lyons E., Edger P., Pires J., and Schranz M., 2013, Whole genome and tandem duplicate retention facilitated glucosinolate pathway diversification in the mustard family, Genome Biology and Evolution, 5(11): 2155-2173. https://doi.org/10.1093/gbe/evt162 Landis J., Soltis D., Li Z., Marx H., Barker M., Tank D., and Soltis P., 2018, Impact of whole-genome duplication events on diversification rates in angiosperms, American Journal of Botany, 105(3): 348-363. https://doi.org/10.1002/ajb2.1060 McGrath C., and Lynch M., 2012, Evolutionary significance of whole-genome duplication, In Polyploidy and Genome Evolution, Berlin, Heidelberg: Springer Berlin Heidelberg, pp.1-20. https://doi.org/10.1007/978-3-642-31442-1_1 Moriyama Y., and Koshiba-Takeuchi K., 2018, Significance of whole-genome duplications on the emergence of evolutionary novelties, Briefings in Functional Genomics, 17: 329-338. https://doi.org/10.1093/bfgp/ely007 Mottes F., Villa C., Osella M., and Caselle M., 2021, The impact of whole genome duplications on the human gene regulatory networks, PLoS Computational Biology, 17(12): e1009638. https://doi.org/10.1371/journal.pcbi.1009638 Nadon B., and Jackson S., 2020, The polyploid origins of crop genomes and their implications: a case study in legumes, Advances in Agronomy, 159: 275-313. https://doi.org/10.1016/BS.AGRON.2019.08.006 Ren R., Wang H., Guo C., Zhang N., Zeng L., Chen Y., Ma H., and Qi J., 2018, Widespread whole genome duplications contribute to genome complexity and species diversity in angiosperms, Molecular Plant, 11(3): 414-428. https://doi.org/10.1016/j.molp.2018.01.002 Schranz M., Mohammadin S., and Edger P., 2012, Ancient whole genome duplications, novelty and diversification: the WGD Radiation Lag-Time Model, Current Opinion in Plant Biology, 15(2): 147-153. https://doi.org/10.1016/j.pbi.2012.03.011 Smet R., and Peer Y., 2012, Redundancy and rewiring of genetic networks following genome-wide duplication events, Current Opinion in Plant Biology, 15(2): 168-176. https://doi.org/10.1016/j.pbi.2012.01.003 Veitia R., and Birchler J., 2021, Gene-dosage issues: a recurrent theme in whole genome duplication events, Trends in Genetics, 38(1): 1-3. https://doi.org/10.1016/j.tig.2021.06.006 Vlasova A., Capella-Gutiérrez S., Rendón-Anaya M., Hernandez-Oñate M., Minoche A., Erb I., Camara F., Prieto-Barja P., Corvelo A., Sanseverino W., Westergaard G., Dohm J., Pappas G., Saburido-Álvarez S., Kedra D., González I., Cozzuto L., Gómez-Garrido J., Aguilar-Morón M., Andreu N., Aguilar O., Garcia-Mas J., Zehnsdorf M., Vázquez M., Delgado-Salinas A., Delaye L., Lowy E., Mentaberry A., Vianello-Brondani R., García J., Alioto T., Sánchez F., Himmelbauer H., Santalla M., Notredame C., Gabaldón T., Herrera-Estrella A., and Guigó R., 2016, Genome and transcriptome analysis of the Mesoamerican common bean and the role of gene duplications in establishing tissue and temporal specialization of genes, Genome Biology, 17: 1-18. https://doi.org/10.1186/s13059-016-0883-6 Young N., and Bharti A., 2012, Genome-enabled insights into legume biology, Annual Review of Plant Biology, 63: 283-305. https://doi.org/10.1146/annurev-arplant-042110-103754

RkJQdWJsaXNoZXIy MjQ4ODYzNA==