LGG_2024v15n1

Legume Genomics and Genetics 2024, Vol.15, No.1, 27-36 http://cropscipublisher.com/index.php/lgg 36 McManus H., Fučíková K., Lewis P., Lewis L., and Karol K., 2018, Organellar phylogenomics inform systematics in the green algal family Hydrodictyaceae (Chlorophyceae) and provide clues to the complex evolutionary history of plastid genomes in the green algal tree of life, American Journal of Botany, 105(3): 315-329. https://doi.org/10.1002/ajb2.1066 Rothfels C., Pryer K., and Li F., 2017, Next-generation polyploid phylogenetics: rapid resolution of hybrid polyploid complexes using PacBio single-molecule sequencing, The New Phytologist, 213(1): 413-429. https://doi.org/10.1111/nph.14111 Uribe-Convers S., Settles M., and Tank D., 2016, A Phylogenomic approach based on PCR target enrichment and high throughput sequencing: resolving the diversity within the south american species of Bartsia L. (Orobanchaceae), PLoS One, 11(2): e0148203. https://doi.org/10.1371/journal.pone.0148203 Vargas O., Ortiz E., and Simpson B., 2017, Conflicting phylogenomic signals reveal a pattern of reticulate evolution in a recent high-Andean diversification (Asteraceae: Astereae: Diplostephium), The New Phytologist, 214(4): 1736-1750. https://doi.org/10.1111/nph.14530 Yang Y., Zhu J., Feng L., Zhou T., Bai G., Yang J., and Zhao G., 2018, Plastid genome comparative and phylogenetic analyses of the key genera in fagaceae: highlighting the effect of codon composition bias in phylogenetic inference, Frontiers in Plant Science, 9: 82. https://doi.org/10.3389/fpls.2018.00082 Zhao Y., Zhang R., Jiang K., Qi J., Hu Y., Guo J., Zhu R., Zhang T., Egan A., Yi T., Huang C., and Ma H., 2021, Nuclear phylotranscriptomics/phylogenomics support numerous polyploidization events and hypotheses for the evolution of rhizobial nitrogen-fixing symbiosis in Fabaceae, Molecular Plant, 14(5): 748-773. https://doi.org/10.1016/j.molp.2021.02.006

RkJQdWJsaXNoZXIy MjQ4ODYzNA==