LGG_2024v15n1

Legume Genomics and Genetics 2024, Vol.15, No.1, 13-22 http://cropscipublisher.com/index.php/lgg 22 Dhaliwal S.K., Gill R.K., Sharma A., Kaur A., Bhatia D. and Kaur S., 2022, A large-effect QTL introgressed from ricebean imparts resistance to mungbean yellow mosaic India virus in blackgram (Vigna mungo (L.) Hepper), Theor. Appl. Genet., 135: 4495-4506. https://doi.org/10.1007/s00122-022-04234-5 Erdogmus S., Ates D., and Nemli S., 2020, Genome-wide association studies of Ca and Mn in the seeds of the common bean (Phaseolus vulgaris L.), Genomics, 112(6): 4536-4546. https://doi.org/10.1016/j.ygeno.2020.03.030 Fang C., Ma Y.M., Wu S.W., Liu Z., Wang Z., Yang R., Hu G.G., Zhou Z.K., Yu H., Zhang M., Pan Y., Zhou GA., Ren H.X, Du W.G., Yan H.R., Wang Y.P., Han D.Z., Shen Y.T., Liu S.L., Liu T.F., Zhang J.X., Qin H., Yuan J., Yuan X.Y., and Tian Z.X., 2022, Genome-wide association studies dissect the genetic networks underlying agronomical traits in soybean, Genome Biology, 18(161): 11-22. https://doi.org/10.1186/s13059-017-1289-9 Hoyos-Villegas V., Song Q., and Kelly J.D., 2017, Genome-wide association analysis for drought tolerance and associated traits in common bean, The Plant Genome, 10(1): 1-17. https://doi.org/10.3835/plantgenome2015.12.0122 Izquierdo P., Kelly J.D., and Beebe S.E., 2023, Combination of meta-analysis of QTL and GWAS to uncover the genetic architecture of seed yield and seed yield components in common bean, The Plant Genome, 16(2): e20328. https://doi.org/10.1002/tpg2.20328 Kamfwa K., Cichy K.A., and Kelly J.D., 2014, Genome-wide association study of agronomic traits in common bean, The Plant Genome, 8(2): 0059. https://doi.org/10.3835/plantgenome2014.09.0059 Korte A., and Farlow A., 2013, The advantages and limitations of trait analysis with GWAS: a review, Plant Methods, 9(1): 1-9. https://doi.org/10.1186/1746-4811-9-29 Kumar R., Kumar M., Dogra R.K., and Bharat N.K., 2015, Variability and character association studies in garden pea (Pisum sativum var. hortense L.) during winter season at mid hills of Himachal Pradesh, Legume Research-An International Journal, 38(2): 164-168. https://doi.org/10.5958/0976-0571.2015.00051.X Kim M.S., Lozano R., Kim J.H., Bae D.N., Kim S.T., Park J.H., Choi M.S., Kim J., Ok H.C., Park S.K., Gore M.A., Moon J.K., Jeong S.C., 2022, The patterns of deleterious mutations during the domestication of soybean, Nature Communications, 12(97): 4146720337. https://doi.org/10.1038/s41467-020-20337-3 Rajendran K., Coyne C.J., and Zheng P., 2021, Genetic diversity and GWAS of agronomic traits using an ICARDA lentil (Lens culinaris Medik.) Reference Plus collection, Plant Genetic Resources: Characterization and Utilization, 19(4): 279-288. https://doi.org/10.1017/S147926212100006X Sallam A., Arbaoui M., and El-Esawi M., 2016, Identification and verification of QTL associated with frost tolerance using linkage map and GWAS in winter faba bean, Frontiers in Plant Science, 7: 1098. https://doi.org/10.3389/fpls.2016.01098 Sonah H., O'Donoughue L., and Cober E., 2015, Identification of loci governing eight agronomic traits using a GBS‐GWAS approach and validation by QTL map in soya bean, Plant Biotechnology Journal, 13(2): 211-221. https://doi.org/10.1111/pbi.12249 Varshney R.K., Thudi M., and Roorkiwal M., 2019, Resequencing of 429 chickpea accessions from 45 countries provides insights into genome diversity, domestication and agronomic traits, Nature Genetics, 51(5): 857-864. https://doi.org/10.1038/s41588-019-0401-3 Webb A., Cottage A., and Wood T., 2016, A SNP‐based consensus genetic map for synteny‐based trait targeting in faba bean (Vicia faba L.), Plant Biotechnology Journal, 14(1): 177-185. https://doi.org/10.1111/pbi.12371 Wen Z., Tan R., and Zhang S., 2018, Integrating GWAS and gene expression data for functional characterization of resistance to white mould in soya bean, Plant Biotechnology Journal, 16(11): 1825-1835. https://doi.org/10.1111/pbi.12918 Zhang J., Song Q., Cregan P.B., and Jiang G.L., 2016, Genome-wide association study, genomic prediction and marker-assisted selection for seed weight in soybean (Glycine max), Theoretical and Applied Genetics, 129: 117-130. https://doi.org/10.1007/s00122-015-2614-x

RkJQdWJsaXNoZXIy MjQ4ODYzNA==