FC_2025v8n5

Field Crop 2025, Vol.8, No.5, 247-257 http://cropscipublisher.com/index.php/fc 256 Postma J., Hecht V., Hikosaka K., Nord E., Pons T., and Poorter H., 2021, Dividing the pie: a quantitative review on plant density responses, Plant, Cell & Environment, 44(4): 1072-1094. https://doi.org/10.1111/pce.13968 Rehling F., Sandner T., and Matthies D., 2021, Biomass partitioning in response to intraspecific competition depends on nutrients and species characteristics: a study of 43 plant species, Journal of Ecology, 109(5): 2219-2233. https://doi.org/10.1111/1365-2745.13635 Rivera-Amado C., Trujillo-Negrellos E., Molero G., Reynolds M., Sylvester-Bradley R., and Foulkes M., 2019, Optimizing dry-matter partitioning for increased spike growth, grain number and harvest index in spring wheat, Field Crops Research, 240: 154-167. https://doi.org/10.1016/j.fcr.2019.04.016 Šarauskis E., Kazlauskas M., Naujokienė V., Bručienė I., Steponavičius D., Romaneckas K., and Jasinskas A., 2022, Variable rate seeding in precision agriculture: recent advances and future perspectives, Agriculture, 12(2): 305. https://doi.org/10.3390/agriculture12020305 Sishodia R., Ray R., and Singh S., 2020, Applications of remote sensing in precision agriculture: a review, Remote Sensing, 12(19): 3136. https://doi.org/10.3390/rs12193136 Slattery R., and Ort D., 2021, Perspectives on improving light distribution and light use efficiency in crop canopies, Plant Physiology, 185(1): 34-48. https://doi.org/10.1093/plphys/kiaa006 Spink J., Semere T., Sparkes D., Whaley J., Foulkes M., Clare R., and Scott R., 2000, Effect of sowing date on the optimum plant density of winter wheat, Annals of Applied Biology, 137(2): 179-188. https://doi.org/10.1111/j.1744-7348.2000.tb00049.x Tao Z., Wang D., Ma S., Yang Y., Zhao G., and Chang X., 2018, Light interception and radiation use efficiency response to tridimensional uniform sowing in winter wheat, Journal of Integrative Agriculture, 17(3): 566-578. https://doi.org/10.1016/S2095-3119(17)61715-5 Ter Steege M., Den Ouden F., Lambers H., Stam P., and Peeters A., 2005, Genetic and physiological architecture of early vigor in Aegilops tauschii, the D-genome donor of hexaploid wheat: a quantitative trait loci analysis, Plant Physiology, 139(2): 1078-1094. https://doi.org/10.1104/pp.105.063263 Tian W., Chen G., Zhang Q., Zhang Z., Zhang J., Yu S., Shi S., and Zhang J., 2025, Can increased density compensate for extremely late-sown wheat yield? Agronomy, 15(3): 607. https://doi.org/10.3390/agronomy15030607 Van Gelderen K., Kang C., Paalman R., Keuskamp D., Hayes S., and Pierik R., 2018, Far-red light detection in the shoot regulates lateral root development through the HY5 transcription factor, The Plant Cell, 30(1): 101-116. https://doi.org/10.1105/tpc.17.00771 Wang J., Evers J., Anten N., Li Y., Yang X., Douma J., and Schneider H., 2025, Far-red light perception by the shoot influences root growth and development in cereal-legume crop mixtures, Plant and Soil, 509(1): 969-986. https://doi.org/10.1007/s11104-024-06903-4 Wang Y., Thorup-Kristensen K., Jensen L., and Magid J., 2016, Vigorous root growth is a better indicator of early nutrient uptake than root hair traits in spring wheat grown under low fertility, Frontiers in Plant Science, 7: 865. https://doi.org/10.3389/fpls.2016.00865 Wei S., Peng A., Huang X., Deng A., Chen C., and Zhang W., 2021, Contributions of climate and soil properties to wheat and maize yield based on long-term fertilization experiments, Plants, 10(10): 2002. https://doi.org/10.3390/plants10102002 Wen P., Wei Q., Zheng L., Rui Z., Niu M., Gao C., Guan X., Wang T., and Xiong S., 2023, Adaptability of wheat to future climate change: effects of sowing date and sowing rate on wheat yield in three wheat production regions in the North China Plain, Science of the Total Environment, 901: 165906. https://doi.org/10.1016/j.scitotenv.2023.165906 Wheeldon C., Walker C., Hamon-Josse M., and Bennett T., 2021, Wheat plants sense substrate volume and root density to pro-actively modulate shoot growth, Plant, Cell & Environment, 44(4): 1202-1214. https://doi.org/10.1111/pce.13984 Wójcik-Gront E., Gozdowski D., Pudełko R., and Lenartowicz T., 2024, Adaptive agronomic strategies for enhancing cereal yield resilience under changing climate in Poland, Agronomy, 14(11): 2702. https://doi.org/10.3390/agronomy14112702 Wu W., Zhang L., Chu Z., Yue W., Xu Y., Peng C., Chen X., Jing L., and Wang S., 2023, Improvement of climate resource utilization efficiency to enhance maize yield through adjusting planting density, Agronomy, 13(3): 846. https://doi.org/10.3390/agronomy13030846 Xie Q., and Sparkes D., 2021, Dissecting the trade-off of grain number and size in wheat, Planta, 254(1): 3. https://doi.org/10.1007/s00425-021-03658-5 Xu M., Zhang Y., Wang Y., Wang L., Bai Y., and Lu Y., 2023, Optimizing nitrogen input and nitrogen use efficiency through soil nitrogen balance in a long-term winter wheat-summer maize rotation system in North China, European Journal of Agronomy, 149: 126908. https://doi.org/10.1016/j.eja.2023.126908

RkJQdWJsaXNoZXIy MjQ4ODYzNA==