Field Crop 2025, Vol.8, No.5, 247-257 http://cropscipublisher.com/index.php/fc 255 Han L., Yang G., Dai H., Xu B., Yang H., Feng H., Li Z., and Yang X., 2019, Modeling maize above-ground biomass based on machine learning approaches using UAV remote-sensing data, Plant Methods, 15(1): 10. https://doi.org/10.1186/s13007-019-0394-z Hanks R., and Thorp F., 1956, Seedling emergence of wheat as related to soil moisture content, bulk density, oxygen diffusion rate, and crust strength, Soil Science Society of America Journal, 20(3): 307-310. https://doi.org/10.2136/sssaj1956.03615995002000030003x Istiak M., Syeed M., Hossain M., Uddin M., Hasan M., Khan R., and Azad N., 2023, Adoption of unmanned aerial vehicle (UAV) imagery in agricultural management: a systematic literature review, Ecological Informatics, 78: 102305. https://doi.org/10.1016/j.ecoinf.2023.102305 Kihara J., Gurmessa B., Tamene L., Amede T., and Sommer R., 2022, Understanding factors influencing wheat productivity in Ethiopian highlands, Experimental Agriculture, 58: e6. https://doi.org/10.1017/S0014479721000296 Kondić D., Bajić M., Hajder Đ., and Knežević D., 2017, Variability of number of spikes per unit area and grain yield effected by different sowing densities of winter wheat (Triticum aestivumL.), Agroznanje Journal, 18(2): 131-141. https://doi.org/10.7251/agren1702131k Kumari M., Prakash D., Sheoran S., Yadav P., Ankit, Yadav H., Gupta R., El-Hendawy S., and Mattar M., 2024, Long-term manuring and fertilization influence on soil properties and wheat productivity in semi-arid regions, Agronomy, 14(10): 2383. https://doi.org/10.3390/agronomy14102383 Li G., Niu W., Sun J., Zhang W., Zhang E., and Wang J., 2021, Soil moisture and nitrogen content influence wheat yield through their effects on the root system and soil bacterial diversity under drip irrigation, Land Degradation & Development, 32(10): 3062-3076. https://doi.org/10.1002/ldr.3967 Li S., Lei Y., Zhang Y., Liu J., Shi X., Jia H., Wang C., Chen F., and Chu Q., 2019, Rational trade-offs between yield increase and fertilizer inputs are essential for sustainable intensification: a case study in wheat-maize cropping systems in China, Science of the Total Environment, 679: 328-336. https://doi.org/10.1016/j.scitotenv.2019.05.085 Li Y., Cui Z., Ni Y., Zheng M., Yang D., Jin M., Chen J., Wang Z., and Yin Y., 2016, Plant density effect on grain number and weight of two winter wheat cultivars at different spikelet and grain positions, PLoS ONE, 11(5): e0155351. https://doi.org/10.1371/journal.pone.0155351 Liu T., Chen W., Li F., Wu W., Sun C., Ding J., Zhu X., and Guo W., 2017, Characterization of the 3D structure of a cultivated land surface and its influence on wheat seedling growth using Kinect, Scientific Reports, 7(1): 3927. https://doi.org/10.1038/s41598-017-04392-3 Loewen S., and Maxwell B., 2024, Optimizing crop seeding rates on organic grain farms using on farm precision experimentation, Field Crops Research, 310: 109593. https://doi.org/10.1016/j.fcr.2024.109593 Maes W., and Steppe K., 2019, Perspectives for remote sensing with unmanned aerial vehicles in precision agriculture, Trends in Plant Science, 24(2): 152-164. https://doi.org/10.1016/j.tplants.2018.11.007 Marinho J., Silva S., De Souza D., Fonseca I., Bazzo J., and Zucareli C., 2021, Wheat yield and seed physiological quality affected by initial seed vigor, sowing density, and environmental conditions, Semina: Ciências Agrárias (Londrina), 42(3): 1595-1614. https://doi.org/10.5433/1679-0359.2021v42n3supl1p1595 Marinho J., Silva S., Fonseca I., and Zucareli C., 2022, Nitrogen fertilization and sowing density on yield and physiological quality of wheat seeds, Journal of Seed Science, 44: e202244013. https://doi.org/10.1590/2317-1545v44254717 Mathlouthi F., Ruggeri R., and Rossini F., 2022, Alternative solution to synthetic fertilizers for the starter fertilization of bread wheat under Mediterranean climatic conditions, Agronomy, 12(2): 511. https://doi.org/10.3390/agronomy12020511 Mesas-Carrascosa F., 2020, UAS-remote sensing methods for mapping, monitoring and modeling crops, Remote Sensing, 12(23): 3873. https://doi.org/10.3390/rs12233873 Nevavuori P., Narra N., Linna P., and Lipping T., 2020, Crop yield prediction using multitemporal UAV data and spatio-temporal deep learning models, Remote Sensing, 12(23): 4000. https://doi.org/10.3390/rs12234000 Omia E., Bae H., Park E., Kim M., Baek I., Kabenge I., and Cho B., 2023, Remote sensing in field crop monitoring: a comprehensive review of sensor systems, data analyses and recent advances, Remote Sensing, 15(2): 354. https://doi.org/10.3390/rs15020354 Palta J., Fillery I., and Rebetzke G., 2007, Restricted-tillering wheat does not lead to greater investment in roots and early nitrogen uptake, Field Crops Research, 104(1-3): 52-59. https://doi.org/10.1016/j.fcr.2007.03.015 Pflugfelder D., Kochs J., Koller R., Jahnke S., Mohl C., Pariyar S., Fassbender H., Nagel K., Watt M., and Van Dusschoten D., 2021, The root system architecture of wheat establishing in soil is associated with varying elongation rates of seminal roots: Quantification using 4D MRI, Journal of Experimental Botany, 73(7): 2050-2060. https://doi.org/10.1093/jxb/erab551
RkJQdWJsaXNoZXIy MjQ4ODYzNA==