Field Crop 2025, Vol.8, No.5, 213-221 http://cropscipublisher.com/index.php/fc 220 Gu H., Mills C., Ritchie G., and Guo W., 2024, Water stress assessment of cotton cultivars using unmanned aerial system images, Remote Sensing, 16(14): 2609. https://doi.org/10.3390/rs16142609 Guo Z., and Chen H., 2024, Research on the application of Internet of Things (IoT) for water and fertilizer integration and smart irrigation system in cotton production, Applied Mathematics and Nonlinear Sciences, 9(1): 2414. https://doi.org/10.2478/amns-2024-2414 Hasan M., Ma F., Prodhan Z., Li F., Shen H., Chen Y., and Wang X., 2018, Molecular and physio-biochemical characterization of cotton species for assessing drought stress tolerance, International Journal of Molecular Sciences, 19(9): 2636. https://doi.org/10.3390/ijms19092636 Imran M., Ali A., Ashfaq M., Hassan S., Culas R., and Ma C., 2018, Impact of climate-smart agriculture (CSA) practices on cotton production and livelihood of farmers in Punjab, Pakistan, Sustainability, 10(6): 2101. https://doi.org/10.3390/su10062101 Khalequzzaman, Ullah H., Himanshu S., Islam N., Tisarum R., Cha-Um S., and Datta A., 2023, Seed priming improves germination, yield, and water productivity of cotton under drought stress, Journal of Soil Science and Plant Nutrition, 23(2): 2418-2432. https://doi.org/10.1007/s42729-023-01196-5 Khalid M., Shakeel H., Razzaq I., Amjad, and Amjad N., 2025, Sustainable cotton production in the era of climate change: challenges and adaptive measures, Journal of Agriculture and Biology, 3(1): 402-415. https://doi.org/10.55627/agribiol.003.01.1265 Khan A., Pan X., Najeeb U., Tan D., Fahad S., Zahoor R., and Luo H., 2018, Coping with drought: Stress and adaptive mechanisms, and management through cultural and molecular alternatives in cotton as vital constituents for plant stress resilience and fitness, Biological Research, 51: 47. https://doi.org/10.1186/s40659-018-0198-z Lee J., Snider J., Roberts P., Hand L., Culpepper A., Pokhrel A., and Chalise D., 2023, The effect of pre-drought mepiquat chloride management on cotton sensitivity to drought during peak water demands, Field Crops Research, 298: 108969. https://doi.org/10.1016/j.fcr.2023.108969 Lin M., Wang L., Lv G., Gao C., Zhao Y., Li X., He L., and Sun W., 2024, Deficit irrigation effects on cotton growth cycle and preliminary optimization of irrigation strategies in arid environment, Plants, 13(10): 1403. https://doi.org/10.3390/plants13101403 Liu S., Zhang W., Shi T., Li T., Li H., Zhou G., Wang Z., and Ma X., 2025, Increasing exposure of cotton growing areas to compound drought and heat events in a warming climate, Agricultural Water Management, 308: 109307. https://doi.org/10.1016/j.agwat.2025.109307 Luqman T., Hussain M., Ahmed S., Ijaz I., Maryum Z., Nadeem S., Khan Z., Khan S., Aslam M., Liu Y., and Khan M., 2025, Cotton under heat stress: a comprehensive review of molecular breeding, genomics, and multi-omics strategies, Frontiers in Genetics, 16: 1553406. https://doi.org/10.3389/fgene.2025.1553406 Madhuri C., Suresh P., Kiran P., and Sumanth V., 2024, Smart irrigation optimization with IoT and weather forecasts for sustainable crop management, In: 2024 1st International Conference on Advances in Computing, Communication and Networking (ICAC2N), IEEE, pp.1-7. https://doi.org/10.1109/ICAC2N63387.2024.10895564 Majeed S., Chaudhary M., Mubarik M., Rana I., Shaban M., Tan D., Jia Y., Du X., Hinze L., and Azhar M., 2024, Genetics of biochemical attributes regulating morpho-physiology of upland cotton under high temperature conditions, Journal of Cotton Research, 7(1): 3. https://doi.org/10.1186/s42397-023-00164-9 Mishra N., Sun L., Zhu X., Smith J., Prakash Srivastava A., Yang X., Pehlivan N., Esmaeili N., Luo H., Shen G., Jones D., Auld D., Burke J., Payton P., and Zhang H., 2017, Overexpression of the rice SUMO E3 ligase gene OsSIZ1 in cotton enhances drought and heat tolerance, and substantially improves fiber yields in the field under reduced irrigation and rainfed conditions, Plant and Cell Physiology, 58(4): 735-746. https://doi.org/10.1093/pcp/pcx032 Morchid A., Et-Taibi B., Oughannou Z., Alami R., Qjidaa H., Jamil M., Boufounas E., and Abid M., 2024, IoT-enabled smart agriculture for improving water management: a smart irrigation control using embedded systems and server-sent events, Scientific African, 27: e02527. https://doi.org/10.1016/j.sciaf.2024.e02527 Patil A., Pawar B., Wagh S., Shinde H., Shelake R., Markad N., Bhute N., Červený J., and Wagh R., 2024, Abiotic stress in cotton: Insights into plant responses and biotechnological solutions, Agriculture, 14(9): 1638. https://doi.org/10.3390/agriculture14091638 Rahman M., Ahmad I., Ghaffar A., Haider G., Ahmad A., Ahmad B., Tariq M., Nasim W., Rasul G., Fahad S., Ahmad S., and Hoogenboom G., 2020, Climate resilient cotton production system: a case study in Pakistan, In: Cotton production and uses: agronomy, crop protection, and postharvest technologies, Singapore: Springer Singapore, pp.447-484. https://doi.org/10.1007/978-981-15-1472-2_22 Rahman M., Majeed A., Zulfiqar S., Ishfaq S., Mohsan M., and Ahmad N., 2021, Genomic-assisted breeding for abiotic stress tolerance, In: Cotton Precision Breeding, Cham: Springer International Publishing, pp.137-156. https://doi.org/10.1007/978-3-030-64504-5_6 Rasheed A., Zhao L., Raza A., Mahmood A., Xing H., Lv X., Saeed H., Alqahtani F., Hashem M., Hassan M., Gillani S., and Jie Y., 2023, Role of molecular breeding tools in enhancing the breeding of drought-resilient cotton genotypes: an updated review, Water, 15(7): 1377. https://doi.org/10.3390/w15071377
RkJQdWJsaXNoZXIy MjQ4ODYzNA==