FC_2025v8n3

Field Crop 2025, Vol.8, No.3, 154-165 http://cropscipublisher.com/index.php/fc 164 Islam S., De Neergaard A., Sander B., Jensen L., Wassmann R., and Van Groenigen J., 2020, Reducing greenhouse gas emissions and grain arsenic and lead levels without compromising yield in organically produced rice, Agriculture, Ecosystems & Environment, 295: 106922. https://doi.org/10.1016/j.agee.2020.106922 Jiang W., Fang X., Huang Z., Chen Z., Xiang W., Chen M., Yang S., and Du X., 2014, Greenhouse gas emissions and agronomic performances were affected by different irrigation methods in rice field, Journal of Food, Agriculture and Environment, 12: 559-565. Karki S., Adviento-Borbe M., Runkle B., Moreno-García B., Anders M., and Reba M., 2022, Multiyear methane and nitrous oxide emissions in different irrigation management under long-term continuous rice rotation in Arkansas, Journal of Environmental Quality, 52(3): 558-572. https://doi.org/10.1002/jeq2.20444 Khalil M., and Shearer M., 2006, Decreasing emissions of methane from rice agriculture, In: International congress series, Elsevier, 1293: 33-41. https://doi.org/10.1016/J.ICS.2006.03.003 Loaiza S., Verchot L., Valencia D., Guzmán P., Amezquita N., Garcés G., Puentes O., Trujillo C., Chirinda N., and Pittelkow C., 2024, Evaluating greenhouse gas mitigation through alternate wetting and drying irrigation in Colombian rice production, Agriculture, Ecosystems & Environment, 360: 108787. https://doi.org/10.1016/j.agee.2023.108787 Mahadi M., Rahman Z., and Sarker A., 2018, A climate resilient management practice in rice farming: adoption of alternate wetting and drying in Bangladesh, International Journal of Agricultural Extension, 6(1): 25-32. https://doi.org/10.33687/IJAE.006.01.2432 Mckinley J., Sander B., Vuduong Q., Mai T., and LaFrance J., 2020, How expectations, information, and subsidies influence farmers’ use of alternate wetting and drying in Vietnam’s River Deltas, In: 2020 Conference (64th), Australasian agricultural and resource economics society (AARES), Perth, Western Australia, pp.1-2. https://doi.org/10.22004/AG.ECON.305255 Mote K., Rao V., Ramulu V., Kumar K., and Devi M., 2021, Performance of rice (Oryza sativa (L.)) under AWD irrigation practice—A brief review, Paddy and Water Environment, 20(1): 1-21. https://doi.org/10.1007/s10333-021-00873-4 Neogi M., Uddin A., Uddin M., and Hamid M., 2018, Alternate wetting and drying (AWD) technology: a way to reduce irrigation cost and ensure higher yields of Boro rice, Journal of The Bangladesh Agricultural University, 16(1): 1-4. https://doi.org/10.3329/JBAU.V16I1.36471 Rejesus R., Palis F., Rodriguez D., Lampayan R., and Bouman B., 2011, Impact of the alternate wetting and drying (AWD) water-saving irrigation technique: evidence from rice producers in the Philippines, Food Policy, 36(2): 280-288. https://doi.org/10.1016/J.FOODPOL.2010.11.026 Shaibu Y., Banda H., Makwiza C., and Malunga J., 2014, Grain yield performance of upland and lowland rice varieties under water saving irrigation through alternate wetting and drying in sandy clay loams of Southern Malawi, Experimental Agriculture, 51(2): 313-326. https://doi.org/10.1017/S0014479714000325 Sun Y., Wu Q., Chi D., Chen,H., Zhu S., and Liu Q., 2025, Water-saving irrigation combined with N-loaded clinoptilolite enhances nutrient yield, and water productivity by improving rice root characteristics: a combined PCA-SEM analysis, Agricultural Water Management, 307: 109203. https://doi.org/10.1016/j.agwat.2024.109203 Suwanmaneepong S., Kultawanich K., Khurnpoon L., Sabaijai P., Cavite H., Llones C., Lepcha N., and Kerdsriserm C., 2023, Alternate wetting and drying as water-saving technology: an adoption intention in the perspective of good agricultural practices (GAP) suburban rice farmers in Thailand, Water, 15(3): 402. https://doi.org/10.3390/w15030402 Tirol-Padre A., Minamikawa K., Tokida T., Wassmann R., and Yagi K., 2018, Site-specific feasibility of alternate wetting and drying as a greenhouse gas mitigation option in irrigated rice fields in Southeast Asia: a synthesis, Soil Science and Plant Nutrition, 64(1): 2-13. https://doi.org/10.1080/00380768.2017.1409602 Towprayoon S., Smakgahn K., and Poonkaew S., 2005, Mitigation of methane and nitrous oxide emissions from drained irrigated rice fields, Chemosphere, 59(11): 1547-1556. https://doi.org/10.1016/J.CHEMOSPHERE.2005.02.009 Trang V., Nelson K., Samsuzzaman S., Rahman S., Rashid M., Salahuddin A., and Sander B., 2022, Institutional analysis for scaling alternate wetting and drying for low-emissions rice production: evidence from Bangladesh, Climate and Development, 15(1): 10-19. https://doi.org/10.1080/17565529.2022.2036088 Uddin M., and Dhar A., 2020, Assessing the impact of water-saving technologies on Boro rice farming in Bangladesh: economic and environmental perspective, Irrigation Science, 38(2): 199-212. https://doi.org/10.1007/s00271-019-00662-2 Wang C., Fa X., Meng Q., Zhang Y., Wang W., Zhu K., Zhang W., Gu J., Liu L., Zhang J., and Zhang H., 2024, Comparison of agronomic and physiological characteristics for rice varieties differing in water use efficiency under alternate wetting and drying irrigation, Agronomy, 14(9): 1986. https://doi.org/10.3390/agronomy14091986 Wang J., Jin W., Xie N., Che Z., Zhang C., Li X., Wu G., Yang S., Dong Z., and Song H., 2025, Oxygen availability governs the mitigating effect of 3,4-dimethylpyrazole phosphate on nitrous oxide emissions from paddy soils under various water managements, Journal of Agricultural and Food Chemistry, 73(10): 5781-5791. https://doi.org/10.1021/acs.jafc.4c09965

RkJQdWJsaXNoZXIy MjQ4ODYzNA==