Field Crop 2025, Vol.8, No.3, 139-153 http://cropscipublisher.com/index.php/fc 152 References Adams B., Ritchie G., and Rajan N., 2020, Cotton phenotyping and physiology monitoring with a proximal remote sensing system, Crop Science, 61(2): 1317-1327. https://doi.org/10.1002/csc2.20434 Adke S., Li C., Rasheed K., and Maier F., 2022, Supervised and weakly supervised deep learning for segmentation and counting of cotton bolls using proximal imagery, Sensors, 22(10): 3688. https://doi.org/10.3390/s22103688 Ampatzidis Y., and Partel V., 2020, UAV- and cloud-based application for high throughput phenotyping utilizing deep learning, In: 2020 ASABE annual international virtual meeting, American Society of Agricultural and Biological Engineers, 2020: 1. https://doi.org/10.13031/aim.202000775 Beegum S., Hassan M., Ramamoorthy P., Bheemanahalli R., Reddy K., Reddy V., and Reddy K., 2024, Hyperspectral reflectance-based high throughput phenotyping to assess water-use efficiency in cotton, Agriculture, 14(7): 1054. https://doi.org/10.3390/agriculture14071054 Deng Y.F., Xiao S.P., Yang X., Yang S.Q., Liu X.W., Ke X.S., and Wang T., 2020, Analysis of main agronomic traits of new early-maturing cotton lines and selection of elite varieties, Subtropical Agriculture Research, 3: 145-152. https://doi.org/10.13321/j.cnki.subtrop.agric.res.2020.03.001 Feng A., Zhou J., Vories E., and Sudduth K., 2022, Quantifying the effects of soil texture and weather on cotton development and yield using UAV imagery, Precision Agriculture, 23(4): 1248-1275. https://doi.org/10.1007/s11119-022-09883-6 Feng M.C., Su Y., Lin T., Yu X., Song Y., and Jin X.L., 2025, High throughput cotton yield estimation based on multi-source remote sensing data from unmanned aerial vehicles and machine learning, Transactions of the Chinese Society of Agricultural Machinery, 56(3): 169-179. https://doi.org/10.6041/j.issn.1000-1298.2025.03.017 Gu H., Mills C., Ritchie G.L., and Guo W., 2024, Water stress assessment of cotton cultivars using unmanned aerial system images, Remote Sensing, 16(14): 2609. https://doi.org/10.3390/rs16142609 Jiang Y., Li C., Robertson J.S., Sun S., Xu R., and Paterson A., 2018, GPhenoVision: a ground mobile system with multi-modal imaging for field-based high throughput phenotyping of cotton, Scientific Reports, 8(1): 1213. https://doi.org/10.1038/s41598-018-19142-2 Li Y.K., Guo X.Y., Zhang Y., Gu S.H., Zhang Y.J., and Wu S., 2023, Research progress on cotton phenotypic techniques, Jiangsu Agricultural Sciences, 11: 27-36. Li Z., 2024, A review of cotton cultivation techniques for high yield, Cotton Genomics and Genetics, 15(6): 284-293. https://doi.org/10.5376/cgg.2024.15.0027 Ma Y.R., LüX., Qi Y.Q., Zhang Z., Yi X., Chen X.Y., Yan T.Y., Hou T.Y., 2021, Estimation of the defoliation rate of cotton based on unmanned aerial vehicle digital images, Cotton Science, 4: 347-359. https://doi.org/10.11963/cs20210003 O'Shaughnessy S., Colaizzi P., and Bednarz C., 2023, Sensor feedback system enables automated deficit irrigation scheduling for cotton, Frontiers in Plant Science, 14: 1149424. https://doi.org/10.3389/fpls.2023.1149424 Psiroukis V., Papadopoulos G., Kasimati A., Tsoulias N., and Fountas S., 2023, Cotton growth modelling using UAS-derived DSM and RGB imagery, Remote Sensing, 15(5): 1214. https://doi.org/10.3390/rs15051214 Sun S., Li C., and Paterson A., 2017, In-field high-throughput phenotyping of cotton plant height using LiDAR, Remote Sensing, 9(4): 377. https://doi.org/10.3390/rs9040377 Thorp K., Thompson A.L., and Herritt M., 2024, Phenotyping cotton leaf chlorophyll via in situ hyperspectral reflectance sensing, spectral vegetation indices, and machine learning, Frontiers in Plant Science, 15: 1495593. https://doi.org/10.3389/fpls.2024.1495593 Wang H.H., Zhang Z., Kang X., Lin J., Yin C., Ma L., Huang C., and LüX., 2022, Cotton planting area extraction and yield prediction based on Sentinel-2A, Transactions of the Chinese Society of Agricultural Engineering, 38(10): 205-214. Wu W., Wen W., Zhang Y., Wang Y., and Liu J., 2022, Estimation of cotton canopy parameters based on unmanned aerial vehicle (UAV) oblique photography, Plant Methods, 18(1): 129. https://doi.org/10.1186/s13007-022-00966-z Xu N., Fok M., Li J., Yang X., and Yan W., 2017, Optimization of cotton variety registration criteria aided with a genotype-by-trait biplot analysis, Scientific Reports, 7(1): 17237. https://doi.org/10.1038/s41598-017-17631-4 Yang Y.Z., Xia W.K., Chu H.Q., Su W.H., Wang R.F., and Wang H.H., 2025, A comprehensive review of deep learning applications in cotton industry: from field monitoring to smart processing, Plants, 14(10): 1481. https://doi.org/10.3390/plants14101481
RkJQdWJsaXNoZXIy MjQ4ODYzNA==