Field Crop 2025, Vol.8, No.3, 102-112 http://cropscipublisher.com/index.php/fc 111 Chen J.L., Sun S.R., Wang Z.Q., Fu H.Y., Xu H.Y., Chang H.L., Gao S.J., and Wang Q.N., 2025, Identification of causal agents of rust of Saccharumspp. and assessment of resistance to brown rust in Erianthus arundinaceus clones and their offspring, Plants, 14(8):1221. https://doi.org/10.3390/plants14081221 Chen Y., Huang T., You C., Chen Y., Chen Y., Que Y., and Su Y., 2025, The function and regulatory network of sugarcane chitinase gene ScChiIV1 in response to pathogen stress, Plant Physiology and Biochemistry, 221: 109630. https://doi.org/10.1016/j.plaphy.2025.109630 de Queiroz Bomdespacho L., Lapa‐Guimarães J., and Petrus R.R., 2021, Designing the sensory profile of sugarcane juice extracted from different cultivars, Journal of Sensory Studies, 36(3): e12654. https://doi.org/10.1111/joss.12654 Ge Y., Li K., Xie C., Xu Y., Shi C., Hang F., and Doherty W.O., 2021, Formation of volatile and aroma compounds during the dehydration of membrane-clarified sugarcane juice to non-centrifugal sugar, Foods, 10(7): 1561. https://doi.org/10.3390/foods10071561 Govindakurup H., and Mohanraj K., 2024, Historical perspectives on sugarcane breeding for value addition, In: Value addition and product diversification in sugarcane, Singapore: Springer Nature Singapore, pp.33-60. https://doi.org/10.1007/978-981-97-7228-5_2 Healey A., Garsmeur O., Lovell J., Shengquiang S., Sreedasyam A., Jenkins J., Plott C., Piperidis N., Pompidor N., Llaca V., Metcalfe C., Doležel J., Cápal P., Carlson J., Hoarau J., Hervouet C., Zini C., Diévart A., Lipzen A., Williams M., Boston L., Webber J., Keymanesh K., Tejomurthula S., Rajasekar S., Suchecki R., Furtado A., May G., Parakkal P., Simmons B., Barry K., Henry R., Grimwood J., Aitken K., Schmutz J., and D'Hont A., 2024, The complex polyploid genome architecture of sugarcane, Nature, 628(8009): 804-810. https://doi.org/10.1038/s41586-024-07231-4 Islam M.S., Qin L., McCord P.H., Sood S., and Zhang M., 2025, Marker trait association and candidate gene identification for brown rust disease in sugarcane, Crop Science, 65(1): e21388. https://doi.org/10.1002/csc2.21388 Liang Q., Liu X.Y., Zhou H., Lei J.C., Lin S.H., Yan M.X., Verma K.K., Wei K.J., Wei H.C., Li W.J., Li Y.R., Song X.P., and Li Y.J., 2025, Breeding and regional production capacity performance of new sugarcane cultivar GT 66, Scientific Reports, 15(1): 12963. https://doi.org/10.1038/s41598-025-94458-4 Li X., Li Y., Wei A., Wang Z., Huang H., Huang Q., Yang L., Gao Y., Zhu G., Liu Q., Li Y., Wei S., and Wei D., 2023, Integrated transcriptomic and proteomic analyses of two sugarcane (Saccharum officinarumLinn.) varieties differing in their lodging tolerance, BMC Plant Biology, 23(1): 601. https://doi.org/10.1186/s12870-023-04622-z Li X., Liu Z., Wu H., Yu Z., Meng J., Zhao H., Deng X., Su Y., Chen B., and Li R., 2024, Four sugarcane ScDIR genes contribute to lignin biosynthesis and disease resistance to Sporisorium scitamineum, Phytopathology Research, 6(1): 17. https://doi.org/10.1186/s42483-024-00237-w Li Z., Zhang Y., Ren J., Jia F., Zeng H., Li G., and Yang X., 2022, Ethylene-responsive factor ERF114 mediates fungal pathogen effector PevD1-induced disease resistance in Arabidopsis thaliana, Molecular Plant Pathology, 23(6): 819-831. https://doi.org/10.1111/mpp.13208 Lu G., Liu P., Wu Q., Zhang S., Zhao P., Zhang Y., and Que Y., 2024, Sugarcane breeding: a fantastic past and promising future driven by technology and methods, Frontiers in Plant Science, 15: 1375934. https://doi.org/10.3389/fpls.2024.1375934 Lu G., Wang Z., Pan Y.B., Wu Q., Cheng W., Xu F., Dai S., Li B., Que Y., and Xu L., 2023, Identification of QTLs and critical genes related to sugarcane mosaic disease resistance, Frontiers in Plant Science, 14: 1107314. https://doi.org/10.3389/fpls.2023.1107314 Luo J., Pan Y.B., Que Y., Zhang H., Grisham M.P., and Xu L., 2015, Biplot evaluation of test environments and identification of mega-environment for sugarcane cultivars in China, Scientific Reports, 5(1): 15505. https://doi.org/10.1038/srep15505 Mahadevaiah C., Appunu C., Aitken K., Suresha G.S., Vignesh P., Mahadeva Swamy H.K., Valarmathi R., Hemaprabha G., Alagarasan G., and Ram B., 2021, Genomic selection in sugarcane: current status and future prospects, Frontiers in Plant Science, 12: 708233. https://doi.org/10.3389/fpls.2021.708233 Mehareb E.M., Osman M.A., Attia A.E., Bekheet M.A., and Abo Elenen F.F., 2022, Stability assessment for selection of elite sugarcane clones across multi-environment based on AMMI and GGE-biplot models, Euphytica, 218(7): 95. https://doi.org/10.1007/s10681-022-03025-9 Pompidor N., Charron C., Hervouet C., Bocs S., Droc G., Rivallan R., Manez A., Mitros T., Swaminathan K., Glaszmann J., Garsmeur O., and D'Hont A., 2021, Three founding ancestral genomes involved in the origin of sugarcane, Annals of Botany, 127(6): 827-840. https://doi.org/10.1093/aob/mcab008 Rohit S., Shanmuganathan M., Jeyaprakash P., Akilan M., and Rathika S., 2024, The nutrient-rich profile of wonder cane: comprehensive phytochemical and elemental analysis of Co 86032 sugarcane variety, Annals of Phytomedicine, 13(2): 1019-1029. http://dx.doi.org/10.54085/ap.2024.13.2.105 Sandhu K., Shiv A., Kaur G., Meena M., Raja A., Vengavasi K., Mall A., Kumar S., Singh P., Singh J., Hemaprabha G., Pathak A., Krishnappa G., and Kumar S., 2022, Integrated approach in genomic selection to accelerate genetic gain in sugarcane, Plants, 11(16): 2139. https://doi.org/10.3390/plants11162139
RkJQdWJsaXNoZXIy MjQ4ODYzNA==