Field Crop 2025, Vol.8, No.2, 93-101 http://cropscipublisher.com/index.php/fc 100 Louime C., Vasanthaiah H., Basha S., and Lu J., 2010, Perspective of biotic and abiotic stress research in grapevines (Vitis sp.), International Journal of Fruit Science, 10(1): 79-86. https://doi.org/10.1080/15538361003676819 Maia M., Ferreira A., Nascimento R., Monteiro F., Traquete F., Marques A., Cunha J., Eiras-Dias J., Cordeiro C., Figueiredo A., and Silva S., 2020, Integrating metabolomics and targeted gene expression to uncover potential biomarkers of fungal/oomycetes-associated disease susceptibility in grapevine, Scientific Reports, 10(1): 15688. https://doi.org/10.1038/s41598-020-72781-2 Malviya D., Thosar R., Kokare N., Pawar S., Singh U., Saha S., Rai J., Singh H., Somkuwar R., and Saxena A., 2022, A comparative analysis of microbe-based technologies developed at ICAR-NBAIM against Erysiphe necator causing powdery mildew disease in grapes (Vitis vinifera L.), Frontiers in Microbiology, 13: 871901. https://doi.org/10.3389/fmicb.2022.871901 Massonnet M., Riaz S., Pap D., Figueroa-Balderas R., Walker M., and Cantu D., 2022, The grape powdery mildew resistance loci Ren2, Ren3, Ren4D, Ren4U, Run1, Run1.2b, Run2.1, and Run2.2 activate different transcriptional responses to Erysiphe necator, Frontiers in Plant Science, 13: 1096862. https://doi.org/10.3389/fpls.2022.1096862 Merdinoglu D., Schneider C., Prado E., Wiedemann-Merdinoglu S., and Mestre P., 2018, Breeding for durable resistance to downy and powdery mildew in grapevine, OENO One, 52(3): 203-209. https://doi.org/10.20870/OENO-ONE.2018.52.3.2116 Pirrello C., Zeilmaker T., Bianco L., Giacomelli L., Moser C., and Vezzulli S., 2021, Mining grapevine downy mildew susceptibility genes: a resource for genomics-based breeding and tailored gene editing, Biomolecules, 11(2): 181. https://doi.org/10.3390/biom11020181 Possamai T., Wiedemann-Merdinoglu S., Merdinoglu D., Migliaro D., De Mori G., Cipriani G., Velasco R., and Testolin R., 2021, Construction of a high-density genetic map and detection of a major QTL of resistance to powdery mildew (Erysiphe necator Sch.) in Caucasian grapes (Vitis vinifera L.), BMC Plant Biology, 21(1): 528. https://doi.org/10.1186/s12870-021-03174-4 Qiu W., Feechan A., and Dry I., 2015, Current understanding of grapevine defense mechanisms against the biotrophic fungus (Erysiphe necator), the causal agent of powdery mildew disease, Horticulture Research, 2: 15020. https://doi.org/10.1038/hortres.2015.20 Ricciardi V., Crespan M., Maddalena G., Migliaro D., Brancadoro L., Maghradze D., Failla O., Toffolatti S., and De Lorenzis G., 2024, Novel loci associated with resistance to downy and powdery mildew in grapevine, Frontiers in Plant Science, 15: 1386225. https://doi.org/10.3389/fpls.2024.1386225 Roatti B., Perazzolli M., Gessler C., and Pertot I., 2013, Abiotic stresses affect Trichoderma harzianum T39-induced resistance to downy mildew in grapevine, Phytopathology, 103(12): 1227-1234. https://doi.org/10.1094/PHYTO-02-13-0040-R Santos R., Nascimento R., Coelho A., and Figueiredo A., 2020, Grapevine-downy mildew rendezvous: proteome analysis of the first hours of an incompatible interaction, Plants, 9(11): 1498. https://doi.org/10.3390/plants9111498 Sargolzaei M., Maddalena G., Bitsadze N., Maghradze D., Bianco P., Failla O., Toffolatti S., and De Lorenzis G., 2020, Rpv29, Rpv30 and Rpv31: three novel genomic loci associated with resistance to Plasmopara viticola in Vitis vinifera, Frontiers in Plant Science, 11: 562432. https://doi.org/10.3389/fpls.2020.562432 Scariolo F., Gabelli G., Magon G., Palumbo F., Pirrello C., Farinati S., Curioni A., Devillars A., Lucchin M., Barcaccia G., and Vannozzi A., 2024, The transcriptional landscape of berry skin in red and white PIWI (“Pilzwiderstandsfähig”) grapevines possessing QTLs for partial resistance to downy and powdery mildews, Plants, 13(18): 2574. https://doi.org/10.3390/plants13182574 Viret O., Spring J., and Gindro K., 2018, Stilbenes: biomarkers of grapevine resistance to fungal diseases, OENO One, 52(3): 235-241. https://doi.org/10.20870/OENO-ONE.2018.52.3.2033 Wan D., Guo Y., Cheng Y., Hu Y., Xiao S., Wang Y., and Wen Y., 2020, CRISPR/Cas9-mediated mutagenesis of VvMLO3 results in enhanced resistance to powdery mildew in grapevine (Vitis vinifera), Horticulture Research, 7: 116. https://doi.org/10.1038/s41438-020-0339-8 Wang P., Zhao F., Zheng T., Liu Z., Ji X., Zhang Z., Pervaiz T., Shangguan L., and Fang J., 2023, Whole-genome re-sequencing, diversity analysis, and stress-resistance analysis of 77 grape rootstock genotypes, Frontiers in Plant Science, 14: 1102695. https://doi.org/10.3389/fpls.2023.1102695 Weng K., Li Z., Liu R., Wang L., Wang Y., and Xu Y., 2014, Transcriptome of Erysiphe necator-infected Vitis pseudoreticulata leaves provides insight into grapevine resistance to powdery mildew, Horticulture Research, 1: 14049. https://doi.org/10.1038/hortres.2014.49 Yu X., Guo Y., Yang Q., Yu H., Lu M., Zhao L., Jin Z., Xu X., Feng J., and Wen Y., 2024, Chimeric mutations in grapevine ENHANCED DISEASE RESISTANCE1 improve resistance to powdery mildew without growth penalty, Plant Physiology, 195(3): 1995-2015. https://doi.org/10.1093/plphys/kiae169
RkJQdWJsaXNoZXIy MjQ4ODYzNA==