FC_2025v8n2

Field Crop 2025, Vol.8, No.2, 93-101 http://cropscipublisher.com/index.php/fc 99 Castro et al. (2023) is a good example. If everyone can share resistance resources in this way, the breeding progress will definitely be much faster. Of course, the premise is that countries are willing to truly open up resource exchanges. Acknowledgments We sincerely thank the anonymous reviewers for their constructive and targeted suggestions for revising the manuscript. Conflict of Interest Disclosure The authors affirm that this research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest. References Agurto M., Schlechter R., Armijo G., Solano E., Serrano C., Contreras R., Zúñiga G., and Arce-Johnson P., 2017, Run1 and REN1 pyramiding in grapevine (Vitis vinifera cv. Crimson Seedless) displays an improved defense response leading to enhanced resistance to powdery mildew (Erysiphe necator), Frontiers in Plant Science, 8: 758. https://doi.org/10.3389/fpls.2017.00758 Capriotti L., Baraldi E., Mezzetti B., Limera C., and Sabbadini S., 2020, Biotechnological approaches: gene overexpression, gene silencing, and genome editing to control fungal and oomycete diseases in grapevine, International Journal of Molecular Sciences, 21(16): 5701 https://doi.org/10.3390/ijms21165701 Castro C., Massonnet M., Her N., DiSalvo B., Jabłońska B., Jeske D., Cantu D., and Roper M., 2023, Priming grapevine with lipopolysaccharide confers systemic resistance to Pierce's disease and identifies a peroxidase linked to defense priming, New Phytologist, 239(2): 687-704. https://doi.org/10.1111/nph.18945 Dry I., Feechan A., Anderson C., Anderson C., Jermakow A., Bouquet A., Adam-Blondon A., and Thomas M., 2010, Molecular strategies to enhance the genetic resistance of grapevines to powdery mildew, Australian Journal of Grape and Wine Research, 16: 94-105. https://doi.org/10.1111/J.1755-0238.2009.00076.X Fang J., 2024, Breeding 3.0: the precise revolution of genotype selection, Molecular Plant Breeding, 15(1): 8-14. https://doi.org/10.5376/mpb.2024.15.0002 Fedorina J., Tikhonova N., Ukhatova Y., Ivanov R., and Khlestkina E., 2022, Grapevine gene systems for resistance to gray mold Botrytis cinerea and powdery mildew Erysiphe necator, Agronomy, 12(2): 499. https://doi.org/10.3390/agronomy12020499 Ferrandino A., and Lovisolo C., 2014, Abiotic stress effects on grapevine (Vitis vinifera L.): focus on abscisic acid-mediated consequences on secondary metabolism and berry quality, Environmental and Experimental Botany, 103: 138-147. https://doi.org/10.1016/J.ENVEXPBOT.2013.10.012 Ferrandino A., Pagliarani C., and Pérez-Álvarez E., 2023, Secondary metabolites in grapevine: crosstalk of transcriptional, metabolic and hormonal signals controlling stress defence responses in berries and vegetative organs, Frontiers in Plant Science, 14: 1124298. https://doi.org/10.3389/fpls.2023.1124298 Fröbel S., Dudenhöffer J., Töpfer R., and Zyprian E., 2019, Transcriptome analysis of early downy mildew (Plasmopara viticola) defense in grapevines carrying the Asian resistance locus Rpv10, Euphytica, 215(2): 28. https://doi.org/10.1007/s10681-019-2355-z Gadoury D., Cadle-Davidson L., Wilcox W., Dry I., Seem R., and Milgroom M., 2012, Grapevine powdery mildew (Erysiphe necator): a fascinating system for the study of the biology, ecology and epidemiology of an obligate biotroph, Molecular Plant Pathology, 13(1): 1-16. https://doi.org/10.1111/j.1364-3703.2011.00728.x Gauthier A., Trouvelot S., Kelloniemi J., Frettinger P., Wendehenne D., Daire X., Joubert J., Ferrarini A., Delledonne M., Flors V., and Poinssot B., 2014, The sulfated laminarin triggers a stress transcriptome before priming the SA-and ROS-dependent defenses during grapevine's induced resistance against Plasmopara viticola, PLoS ONE, 9(2): e88145. https://doi.org/10.1371/journal.pone.0088145 Guan L., Haider M., Khan N., Nasim M., Jiu S., Fiaz M., Zhu X., Zhang K., and Fang J., 2018, Transcriptome sequence analysis elaborates a complex defensive mechanism of grapevine (Vitis vinifera L.) in response to salt stress, International Journal of Molecular Sciences, 19(12): 4019. https://doi.org/10.3390/ijms19124019 Kelloniemi J., Trouvelot S., Heloir M., Simon A., Dalmais B., Frettinger P., Cimerman A., Fermaud M., Roudet J., Baulande S., Bruel C., Choquer M., Couvelard L., Duthieuw M., Ferrarini A., Flors V., Pêcheur L., Loisel E., Morgant, G., Poussereau N., Pradier J., Rascle C., TrdáL., Poinssot B., and Viaud M., 2015, Analysis of the molecular dialogue between gray mold (Botrytis cinerea) and grapevine (Vitis vinifera) reveals a clear shift in defense mechanisms during berry ripening, Molecular Plant-Microbe Interactions, 28(11): 1167-1180. https://doi.org/10.1094/MPMI-02-15-0039-R Liu C.C., and Liu Y., 2024, Accelerating the process of tree breeding: a review and progress of GWAS applications in forest trees, Tree Genetics and Molecular Breeding, 14(1): 12-21. https://doi.org/10.5376/tgmb.2024.14.0003

RkJQdWJsaXNoZXIy MjQ4ODYzNA==