Field Crop 2025, Vol.8, No.2, 72-81 http://cropscipublisher.com/index.php/fc 80 References Ali E., and Zhang K., 2023, CRISPR-mediated technology for seed oil improvement in rapeseed: challenges and future perspectives, Frontiers in Plant Science, 14: 1086847. https://doi.org/10.3389/fpls.2023.1086847 Do P., Nguyen C., Bui H., Tran L., Stacey G., Gillman J., Zhang Z., and Stacey M., 2019, Demonstration of highly efficient dual gRNA CRISPR/Cas9 editing of the homeologous GmFAD2-1Aand GmFAD2-1Bgenes to yield a high oleic, low linoleic and α-linolenic acid phenotype in soybean, BMC Plant Biology, 19(1): 311. https://doi.org/10.1186/s12870-019-1906-8 Doench J., Fusi N., Sullender M., Hegde M., Vaimberg E., Donovan K., Smith I., Tothova Z., Wilen C., Orchard R., Virgin H., Listgarten J., and Root D., 2015, Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9, Nature Biotechnology, 34(2): 184-191. https://doi.org/10.1038/nbt.3437 Fu Y., Mason A., Zhang Y., and Yu H., 2021, Identification and development of KASP markers for novel mutant BnFAD2 alleles associated with elevated oleic acid in Brassica napus, Frontiers in Plant Science, 12: 715633. https://doi.org/10.3389/fpls.2021.715633 Huang H., Cui T., Zhang L., Yang Q., Yang Y., Xie K., Fan C., and Zhou Y., 2020, Modifications of fatty acid profile through targeted mutation at BnaFAD2 gene with CRISPR/Cas9-mediated gene editing in Brassica napus, Theoretical and Applied Genetics, 133(8): 2401-2411. https://doi.org/10.1007/s00122-020-03607-y Jiang F., and Doudna J., 2017, CRISPR-Cas9 structures and mechanisms, Annual Review of Biophysics, 46: 505-529. https://doi.org/10.1146/annurev-biophys-062215-010822 Jiang W., Henry I., Lynagh P., Comai L., Cahoon E., and Weeks D., 2017, Significant enhancement of fatty acid composition in seeds of the allohexaploid, Camelina sativa, using CRISPR/Cas9 gene editing, Plant Biotechnology Journal, 15(5): 648-657. https://doi.org/10.1111/pbi.12663 Karunarathna N., Wang H., Harloff H., Jiang L., and Jung C., 2020, Elevating seed oil content in a polyploid crop by induced mutations in SEED FATTY ACID REDUCERgenes, Plant Biotechnology Journal, 18(11): 2251-2266. https://doi.org/10.1111/pbi.13381 Lee Y., Park W., Kim K., Jang Y., Lee J., Cha Y., Moon Y., Song Y., and Lee K., 2018, EMS-induced mutation of an endoplasmic reticulum oleate desaturase gene (FAD2-2) results in elevated oleic acid content in rapeseed (Brassica napus L.), Euphytica, 214(2): 28. https://doi.org/10.1007/s10681-017-2106-y Liu H., Lin B., Ren Y., Hao P., Huang L., Xue B., Jiang L., Zhu Y., and Hua S., 2022a, CRISPR/Cas9-mediated editing of double loci of BnFAD2 increased the seed oleic acid content of rapeseed (Brassica napus L.), Frontiers in Plant Science, 13: 1034215. https://doi.org/10.3389/fpls.2022.1034215 Liu Y., Du Z., Lin S., Li H., Lu S., Guo L., and Tang S., 2022b, CRISPR/Cas9-targeted mutagenesis of BnaFAE1 genes confers low-erucic acid in Brassica napus, Frontiers in Plant Science, 13: 848723. https://doi.org/10.3389/fpls.2022.848723 Okuzaki A., Ogawa T., Koizuka C., Kaneko K., Inaba M., Imamura J., and Koizuka N., 2018, CRISPR/Cas9-mediated genome editing of the fatty acid desaturase 2 gene in Brassica napus, Plant Physiology and Biochemistry, 131: 63-69. https://doi.org/10.1016/j.plaphy.2018.04.025 Park M., Yun J., and Kim H., 2021, C-to-G base editing enhances oleic acid production by generating novel alleles of FATTY ACID DESATURASE 2 in plants, Frontiers in Plant Science, 12: 748529. https://doi.org/10.3389/fpls.2021.748529 Pham A., Lee J., Shannon J., and Bilyeu K., 2010, Mutant alleles of FAD2-1Aand FAD2-1Bcombine to produce soybeans with the high oleic acid seed oil trait, BMC Plant Biology, 10(1): 195. https://doi.org/10.1186/1471-2229-10-195 Sandgrind S., Li X., Ivarson E., Wang E., Guan R., Kanagarajan S., and Zhu L., 2023, Improved fatty acid composition of field cress (Lepidium campestre) by CRISPR/Cas9-mediated genome editing, Frontiers in Plant Science, 14: 1076704. https://doi.org/10.3389/fpls.2023.1076704 Shi J., Lang C., Wang F., Wu X., Liu R., Zheng T., Zhang D., Chen J., and Wu G., 2017, Depressed expression of FAE1 and FAD2 genes modifies fatty acid profiles and storage compounds accumulation in Brassica napus seeds, Plant Science, 263: 177-182. https://doi.org/10.1016/j.plantsci.2017.07.014 Shi J., Ni X., Huang J., Fu Y., Wang T., Yu H., and Zhang Y., 2022, CRISPR/Cas9-mediated gene editing of BnFAD2 and BnFAE1 modifies fatty acid profiles in Brassica napus, Genes, 13(10): 1681. https://doi.org/10.3390/genes13101681 Tian Q., Li B., Feng Y., Zhao W., Huang J., and Chao H., 2022, Application of CRISPR/Cas9 in rapeseed for gene function research and genetic improvement, Agronomy, 12(4): 824. https://doi.org/10.3390/agronomy12040824. Wang N., Tao B., Mai J., Guo Y., Li R., Chen R., Zhao L., Wen J., Yi B., Tu J., Fu T., Zou J., and Shen J., 2022, Kinase CIPK9 integrates glucose and abscisic acid signaling to regulate seed oil metabolism in rapeseed, Plant Physiology, 191(3): 1836-1856. https://doi.org/10.1093/plphys/kiac569
RkJQdWJsaXNoZXIy MjQ4ODYzNA==