FC_2025v8n2

Field Crop 2025, Vol.8, No.2, 61-71 http://cropscipublisher.com/index.php/fc 70 Babu P., Baranwal D., Harikrishna, Pal D., Bharti H., Joshi P., Thiyagarajan B., Gaikwad K., Bhardwaj S., Singh G., and Singh A., 2020, Application of genomics tools in wheat breeding to attain durable rust resistance, Frontiers in Plant Science, 11: 567147. https://doi.org/10.3389/fpls.2020.567147 Cosgrove D., 2021, Expanding wheat yields with expansin, The New Phytologist, 230(2): 403-405. https://doi.org/10.1111/nph.17245 Dalrymple D., 1985, The development and adoption of high-yielding varieties of wheat and rice in developing countries, American Journal of Agricultural Economics, 67(5): 1067-1073. https://doi.org/10.2307/1241374 Fischer R., and Edmeades G., 2010, Breeding and cereal yield progress, Crop Science, 50: S-85-S-98. https://doi.org/10.2135/CROPSCI2009.10.0564 Foulkes M., Slafer G., Davies W., Berry P., Sylvester-Bradley R., Martre P., Martre P., Calderini D., Griffiths S., and Reynolds M., 2011, Raising yield potential of wheat. III. Optimizing partitioning to grain while maintaining lodging resistance, Journal of Experimental Botany, 62(2): 469-486. https://doi.org/10.1093/jxb/erq300 Gupta P., Langridge P., and Mir R., 2010, Marker-assisted wheat breeding: present status and future possibilities, Molecular Breeding, 26(2): 145-161. https://doi.org/10.1007/s11032-009-9359-7 Wang H.L., 2009, Application of agricultural mechanization technology in wheat high-yielding, Times Agricultural Machinery, 36(3): 9-10. Li C., 2020, Breeding crops by design for future agriculture, Journal of Zhejiang University. Science. B, 21(6): 423-425. https://doi.org/10.1631/jzus.B2010001 Merrick L., Herr A., Sandhu K., Lozada D., and Carter A., 2022, Utilizing genomic selection for wheat population development and improvement, Agronomy, 12(2): 522. https://doi.org/10.20944/preprints202202.0042.v1 Molero G., Joynson R., Piñera-Chávez F., Gardiner L., Rivera-Amado C., Hall A., and Reynolds M., 2018, Elucidating the genetic basis of biomass accumulation and radiation use efficiency in spring wheat and its role in yield potential, Plant Biotechnology Journal, 17(7): 1276-1288. https://doi.org/10.1111/pbi.13052 Mondal S., Rutkoski J., Velu G., Singh P., Crespo-Herrera L., Guzmán C., Bhavani S., Lan C., He X., and Singh R., 2016, Harnessing diversity in wheat to enhance grain yield, climate resilience, disease and insect pest resistance and nutrition through conventional and modern breeding approaches, Frontiers in Plant Science, 7: 991. https://doi.org/10.3389/fpls.2016.00991 Munaro L., Hefley T., DeWolf E., Haley S., Fritz A., Zhang G., Haag L., Schlegel A., Edwards J., Marburger D., Alderman P., Jones‐Diamond S., Johnson J., Lingenfelser J., Unêda-Trevisoli S., and Lollato R., 2020, Exploring long-term variety performance trials to improve environment-specific genotype × management recommendations: a case-study for winter wheat, Field Crops Research, 255: 107848. https://doi.org/10.1016/j.fcr.2020.107848 O'Leary G., Aggarwal P., Calderini D., Connor D., Craufurd P., Eigenbrode S., Han X., and Hatfield J., 2018, Challenges and responses to ongoing and projected climate change for dryland cereal production systems throughout the world, Agronomy, 8(4): 34. https://doi.org/10.3390/AGRONOMY8040034 Paux E., Lafarge S., Balfourier F., Derory J., Charmet G., Alaux M., Perchet G., Bondoux M., Baret F., Barillot R., Ravel C., Sourdille P., Gouis L., and Consortium O., 2022, Breeding for economically and environmentally sustainable wheat varieties: an integrated approach from genomics to selection, Biology, 11(1): 149. https://doi.org/10.3390/biology11010149 Rempelos L., Wang J., Sufar E., Almuayrifi M., Knutt D., Leifert H., Leifert A., Wilkinson A., Shotton P., Hasanaliyeva G., Bilsborrow P., Wilcockson S., Volakakis N., Markellou E., Zhao B., Jones S., Iversen P., and Leifert C., 2023, Breeding bread-making wheat varieties for organic farming systems: the need to target productivity, robustness, resource use efficiency and grain quality traits, Foods, 12(6): 1209. https://doi.org/10.3390/foods12061209 Reynolds M., Bonnett D., Chapman S., Furbank R., Manes Y., Mather D., and Parry M., 2011, Raising yield potential of wheat. I. Overview of a consortium approach and breeding strategies, Journal of Experimental Botany, 62(2): 439-452. https://doi.org/10.1093/jxb/erq311 Reynolds M., Foulkes J., Furbank R., Griffiths S., King J., Murchie E., Parry M., and Slafer G., 2012, Achieving yield gains in wheat, Plant, Cell & Environment, 35(10): 1799-1823. https://doi.org/10.1111/j.1365-3040.2012.02588.x Romanenko A., Bespalova L., Kudryashov I., and Ablova I., 2007, A novel variety management strategy for precision farming, In: Wheat production in stressed environments: proceedings of the 7th international wheat conference, Mar del Plata, Argentina, Dordrecht: Springer Netherlands, pp.223-232. https://doi.org/10.1007/1-4020-5497-1_29 Ruiz M., Zambrana E., Fité R., Solé A., Tenorio J., and Benavente E., 2019, Yield and quality performance of traditional and improved bread and durum wheat varieties under two conservation tillage systems, Sustainability, 11(17): 4522. https://doi.org/10.3390/SU11174522 Sadras V., 2021, Evolutionary and ecological perspectives on the wheat phenotype, Proceedings of the Royal Society B: Biological Sciences, 288(1958): 20211259. https://doi.org/10.1098/rspb.2021.1259

RkJQdWJsaXNoZXIy MjQ4ODYzNA==