Field Crop 2025, Vol.8, No.2, 51-60 http://cropscipublisher.com/index.php/fc 59 Hashimoto S., Wake T., Nakamura H., Minamiyama M., Araki-Nakamura S., Ohmae-Shinohara K., Koketsu E., Okamura S., Miura K., Kawaguchi H., Kasuga S., and Sazuka T., 2021, The dominance model for heterosis explains culm length genetics in a hybrid sorghum variety, Scientific Reports, 11(1): 4532. https://doi.org/10.1038/s41598-021-84020-3 He S., Tang C., Wang M., Li S., Diallo B., Xu Y., Zhou F., Sun L., Shi W., and Xie G., 2020, Combining ability of cytoplasmic male sterility on yield and agronomic traits of sorghum for grain and biomass dual-purpose use, Industrial Crops and Products, 157: 112894. https://doi.org/10.1016/j.indcrop.2020.112894 Hochholdinger F., and Baldauf J., 2018, Heterosis in plants, Current Biology, 28(18): R1089-R1092. https://doi.org/10.1016/j.cub.2018.06.041 Indhubala M., Ganesamurthy K., and Punitha D., 2010, Heterosis for quality attributes in sweet sorghum hybrids using cytoplasmic genic male sterile lines, Madras Agricultural Journal, 97(10/12): 309-311. Jordan D., Mace E., Henzell R., Klein P., and Klein R., 2010, Molecular mapping and candidate gene identification of the Rf2 gene for pollen fertility restoration in sorghum [Sorghum bicolor (L.) Moench], Theoretical and Applied Genetics, 120(7): 1279-1287. https://doi.org/10.1007/s00122-009-1255-3 Kanbar O.Z., Kanbar A., and Shehab S., 2020, Combining ability and heterosis for some yield traits in sorghum (Sorghum bicolor L. Moench) using (line×tester) design, Journal of Plant Production, 2(8): 1009-1016. https://doi.org/10.21608/jpp.2011.85633 Kibalnik O., 2019, Hybrid vigour effect in sorghum selection, Bulletin of NSAU (Novosibirsk State Agrarian University), (2):15-24. https://doi.org/10.31677/2072-6724-2019-51-2-15-24 Kim Y., and Zhang D., 2018, Molecular control of male fertility for crop hybrid breeding, Trends in Plant Science, 23(1): 53-65. https://doi.org/10.1016/j.tplants.2017.10.001 Kishan A., and Borikar S., 1989, Genetic relationship between some cytoplasmic male sterility systems in sorghum, Euphytica, 42(3): 259-269. https://doi.org/10.1007/BF00034462 Li X., Li X., Fridman E., Tesso T., and Yu J., 2015, Dissecting repulsion linkage in the dwarfing gene Dw3 region for sorghum plant height provides insights into heterosis, Proceedings of the National Academy of Sciences, 112(38): 11823-11828. https://doi.org/10.1073/pnas.1509229112 Makanda I., Tongoona P., Derera J., Sibiya J., and Fato P., 2010, Combining ability and cultivar superiority of sorghum germplasm for grain yield across tropical low-and mid-altitude environments, Field Crops Research, 116(1-2): 75-85. https://doi.org/10.1016/J.FCR.2009.11.015 Mengistu G., Shimelis H., Laing M., Lule D., and Mashilo J., 2020, Combining ability and heterosis among sorghum (Sorghum bicolor [L.] Moench) lines for yield, yield-related traits, and anthracnose resistance in western Ethiopia, Euphytica, 216(2): 33. https://doi.org/10.1007/s10681-020-2563-6 Nadeem M., Chen A., Hong H., Li D., Li J., Zhao D., Wang W., Wang X., and Qiu L., 2021, GmMs1 encodes a kinesin-like protein essential for male fertility in soybean (Glycine max L.), Journal of Integrative Plant Biology, 63(6): 1054-1064. https://doi.org/10.1111/jipb.13110 Narkhede G., Mehtre S., Thakur N., Ingle K., S., V., and Deshpande S., 2022, Genetics of fertility restoration in A1 cytoplasmic genetic male sterility (CGMS) systems in sorghum (Sorghum bicolor L. Moench), bioRxiv, 2022: 825963. https://doi.org/10.31783/elsr.2022.825963 Paril J., Reif J., Fournier-Level A., and Pourkheirandish M., 2023, Heterosis in crop improvement, The Plant Journal, 117(1): 23-32. https://doi.org/10.1111/tpj.16488 Pfeiffer T., Bitzer M., Toy J., and Pedersen J., 2010, Heterosis in sweet sorghum and selection of a new sweet sorghum hybrid for use in syrup production in Appalachia, Crop Science, 50(5): 1788-1794. https://doi.org/10.2135/CROPSCI2009.09.0475 Ringo J., Onkware A., Mgonja M., Deshpande S., Rathore A., Mneney E., and Gudu S., 2015, Heterosis for yield and its components in sorghum ('Sorghum bicolor' L. Moench) hybrids in dry lands and sub-humid environments of East Africa, Australian Journal of Crop Science, 9(1): 9-13. Sandeep N., and Biradar B., 2020, Extent of heterosis for grain yield and its contributing traits in rabi sorghum [Sorghum bicolor (L.) Moench], Journal of Pharmacognosy and Phytochemistry, 9(2): 949-959. https://doi.org/10.22271/phyto.2020.v9.i2p.10979 Shukla S., and Pandey M., 2007, Combining ability and heterosis over environments for yield and yield components in two‐line hybrids involving thermosensitive genic male sterile lines in rice (Oryza sativa L.), Plant Breeding, 127(1): 28-32. https://doi.org/10.1111/J.1439-0523.2007.01432.X Song S., Wang T., Li Y., Hu J., Kan R., Qiu M., Deng Y., Liu P., Zhang L., Dong H., Li C., Yu D., Li X., Yuan D., Yuan L., and Li L., 2020, A novel strategy for creating a new system of third-generation hybrid rice technology using a cytoplasmic sterility gene and a genic male-sterile gene, Plant Biotechnology Journal, 19(2): 251-260. https://doi.org/10.1111/pbi.13457 Wan X., Wu S., and Li X., 2021, Breeding with dominant genic male-sterility genes to boost crop grain yield in post-heterosis utilization era, Molecular Plant, 14(4): 531-534. https://doi.org/10.1016/j.molp.2021.02.004
RkJQdWJsaXNoZXIy MjQ4ODYzNA==