FC_2024v7n6

Field Crop 2024, Vol.7, No.6, 317-324 http://cropscipublisher.com/index.php/fc 323 Juma R., Bartholomé J., Prakash P., Hussain W., Platten J., Lopena V., Verdeprado H., Murori R., Ndayiragije A., Katiyar S., Islam M., Biswas P., Rutkoski J., Arbelaez J., Mbute F., Miano D., and Cobb J., 2021, Identification of an elite core panel as a key breeding resource to accelerate the rate of genetic improvement for irrigated rice, Rice, 14: 1-22. https://doi.org/10.1186/s12284-021-00533-5 Kim S., Ramos J., Ashikari M., Virk P., Torres E., Nissila E., Hechanova S., Mauleon R., and Jena K., 2016, Development and validation of allele-specific SNP/indel markers for eight yield-enhancing genes using whole-genome sequencing strategy to increase yield potential of rice, Oryza sativa L., Rice, 9: 1-17. https://doi.org/10.1186/s12284-016-0084-7 Ladha J., Radanielson A., Rutkoski J., Buresh R., Dobermann A., Angeles O., Pabuayon I., Santos-Medellín C., Fritsche‐Neto R., Chivenge P., and Kohli A., 2021, Steady agronomic and genetic interventions are essential for sustaining productivity in intensive rice cropping, Proceedings of the National Academy of Sciences of the United States of America, 118(45): e2110807118. https://doi.org/10.1073/pnas.2110807118 Li J., Zhang H., Zhu Q., Xia Y.B., Duan Z.L., Wen J.C., and Chen L.J., 2024, Tailor-made rice: using haplotype analysis to design high-yielding varieties, Molecular Plant Breeding, 15(5): 295-307. http://dx.doi.org/10.5376/mpb.2024.15.0028 Li H., Liu L., Wang Z., Yang J., and Zhang J., 2012, Agronomic and physiological performance of high-yielding wheat and rice in the lower reaches of Yangtze River of China, Field Crops Research, 133: 119-129. https://doi.org/10.1016/J.FCR.2012.04.005 Liu P., He L., Mei L., Zhai W., Chen X., and Ma B., 2022, Rapid and directional improvement of elite rice variety via combination of genomics and multiplex genome editing, Journal of Agricultural and Food Chemistry, 70(20): 6156-6167. https://doi.org/10.1021/acs.jafc.1c08028 Maraseni T., Deo R., Qu J., Gentle P., and Neupane P., 2018, An international comparison of rice consumption behaviours and greenhouse gas emissions from rice production, Journal of Cleaner Production, 172: 2288-2300. https://doi.org/10.1016/J.JCLEPRO.2017.11.182 Muthayya S., Sugimoto J., Montgomery S., and Maberly G., 2014, An overview of global rice production, supply, trade, and consumption, Annals of the New York Academy of Sciences, 1324(1): 7-14. https://doi.org/10.1111/nyas.12540 Nutan K., Rathore R., Tripathi A., Mishra M., Pareek A., and Singla-Pareek S., 2020, Integrating dynamics of yield traits in rice responding to environmental changes, Journal of Experimental Botany, 71(2): 490-506. https://doi.org/10.1093/jxb/erz364 Pérez-Méndez N., Miguel-Rojas C., Jiménez-Berni J., Gómez-Candón D., Pérez-De-Luque A., Fereres E., Catala-Forner M., Villegas D., and Sillero J., 2021, Plant breeding and management strategies to minimize the impact of water scarcity and biotic stress in cereal crops under mediterranean conditions, Agronomy, 12(1): 75. https://doi.org/10.3390/agronomy12010075 Rasheed A., Seleiman M., Nawaz M., Mahmood A., Anwar M., Ayub M., Aamer M., El-Esawi M., El-Harty E., Batool M., Hassan M., Wu Z., and Li H., 2021, Agronomic and genetic approaches for enhancing tolerance to heat stress in rice: a review, Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 49(4): 12501-12501. https://doi.org/10.15835/nbha49412501 Sabar M., Mustafa S., Ijaz M., Khan R., Shahzadi̇ F., Saher H., Javed H., Zafar S., Saleem M., Siddique S., and Sabir A., 2024, Rice breeding for yield improvement through traditional and modern genetic tools, European Journal of Ecology, Biology and Agriculture, 1(1): 14-19. https://doi.org/10.59324/ejeba.2024.1(1).02 Su J., Xu K., Li Z., Hu Y., Hu Z., Zheng X., Song S., Tang Z., and Li L., 2021, Genome-wide association study and Mendelian randomization analysis provide insights for improving rice yield potential, Scientific Reports, 11(1): 6894. https://doi.org/10.1038/s41598-021-86389-7 Thiruppathi A., Salunkhe S., Ramasamy S., Palaniswamy R., Rajagopalan V., Rathnasamy S., Alagarswamy S., Swaminathan M., Manickam S., and Muthurajan R., 2024, Unleashing the potential of CRISPR/Cas9 genome editing for yield-related traits in rice, Plants, 13(21): 2972. https://doi.org/10.3390/plants13212972 Tripathi A., Pareek A., Sopory S., and Singla-Pareek S., 2012, Narrowing down the targets for yield improvement in rice under normal and abiotic stress conditions via expression profiling of yield-related genes, Rice, 5: 1-12. https://doi.org/10.1186/1939-8433-5-37 Usman B., Nawaz G., Zhao N., Liu Y., and Li R., 2020, Generation of high yielding and fragrant rice (Oryza sativa L.) lines by CRISPR/Cas9 targeted mutagenesis of three homoeologs of cytochrome P450 gene family and OsBADH2 and transcriptome and proteome profiling of revealed changes triggered by mutations, Plants, 9(6): 788. https://doi.org/10.3390/plants9060788 Verma V., Vishal B., Kohli A., and Kumar P., 2021, Systems-based rice improvement approaches for sustainable food and nutritional security, Plant Cell Reports, 40: 2021-2036. https://doi.org/10.1007/s00299-021-02790-6

RkJQdWJsaXNoZXIy MjQ4ODYzNA==