Field Crop 2024, Vol.7, No.6, 287-297 http://cropscipublisher.com/index.php/fc 297 Sun S., Hu C., Qi X., Chen J., Zhong Y., Muhammad A., Lin M., and Fang J., 2021, The AaCBF4-AaBAM3.1 module enhances freezing tolerance of kiwifruit (Actinidia arguta), Horticulture Research, 8: 97. https://doi.org/10.1038/s41438-021-00530-1 Sun S., Lin M., Qi X., Chen J., Gu H., Zhong Y., Sun L., Muhammad A., Bai D., Hu C., and Fang J., 2021, Full-length transcriptome profiling reveals insight into the cold response of two kiwifruit genotypes (A. arguta) with contrasting freezing tolerances, BMC Plant Biology, 21(1): 365. https://doi.org/10.1186/s12870-021-03152-w. Tahir J., Hoyte S., Bassett H., Brendolise C., Chatterjee A., Templeton K., Deng C., Crowhurst R., Montefiori M., Morgan E., Wotton A., Funnell K., Wiedow C., Knaebel M., Hedderley D., Vanneste J., McCallum J., Hoeata K., Nath A., Chagné D., Gea L., and Gardiner S., 2019, Multiple quantitative trait loci contribute to resistance to bacterial canker incited by Pseudomonas syringae pv. actinidiae in kiwifruit (Actinidia chinensis), Horticulture Research, 6: 101. https://doi.org/10.1038/s41438-019-0184-9 Tu J., Abid M., Luo J., Zhang Y., Yang E., Cai X., Gao P., Huang H., and Wang Z., 2023, Genome-wide identification of the heat shock transcription factor gene family in two kiwifruit species, Frontiers in Plant Science, 14: 1075013. https://doi.org/10.3389/fpls.2023.1075013 Wang T., Wang G., Jia Z., Pan D., Zhang J., and Guo Z., 2018, Transcriptome analysis of kiwifruit in response to Pseudomonas syringae pv. actinidiae infection, International Journal of Molecular Sciences, 19(2): 373. https://doi.org/10.3390/ijms19020373 Wang Y., Zhang Y., Fan C., Wei Y., Meng J., Li Z., and Zhong C., 2021, Genome-wide analysis of MYB transcription factors and their responses to salt stress in Casuarina equisetifolia, BMC Plant Biology, 21(1): 328. Wang Z., Wang S., Li D., Zhang Q., Li L., Zhong C., Liu Y., and Huang H., 2018, Optimized paired‐sgRNA/Cas9 cloning and expression cassette triggers high‐efficiency multiplex genome editing in kiwifruit, Plant Biotechnology Journal, 16: 1424-1433. https://doi.org/10.1111/pbi.12884 Wurms K., Reglinski T., Buissink P., Chee A., Fehlmann C., McDonald S., Cooney J., Jensen D., Hedderley D., McKenzie C., and Rikkerink E., 2023, Effects of drought and flooding on phytohormones and abscisic acid gene expression in kiwifruit, International Journal of Molecular Sciences, 24(8): 7580. https://doi.org/10.3390/ijms24087580 Xing M., Huang K., Zhang C., Xi D., Luo H., Pei J., Ruan R., and Liu H., 2023, Transcriptome analysis reveals the molecular mechanism and responsive genes of waterlogging stress in Actinidia deliciosa planch kiwifruit plants, International Journal of Molecular Sciences, 24(21): 15887. https://doi.org/10.3390/ijms242115887 Yoon Y., Seo D.H., Shin H., Kim H.J., Kim C.M., and Jang G., 2020, The role of stress-responsive transcription factors in modulating abiotic stress tolerance in plants, Agronomy, 10(6): 788. Zhang A., Xiong Y., Liu F., and Zhang X., 2023, A genome-wide analysis of the pentatricopeptide repeat protein gene family in two kiwifruit species with an emphasis on the role of RNA editing in pathogen stress, International Journal of Molecular Sciences, 24(18): 13700. https://doi.org/10.3390/ijms241813700 Zhang Y., Tang W., Wang L., Hu Y., Liu X., and Liu Y., 2019, Kiwifruit (Actinidia chinensis) R1R2R3-MYB transcription factor AcMYB3R enhances drought and salinity tolerance in Arabidopsis thaliana, Journal of Integrative Agriculture, 18(2): 417-427. https://doi.org/10.1016/S2095-3119(18)62127-6
RkJQdWJsaXNoZXIy MjQ4ODYzNA==