Field Crop 2024, Vol.7, No.6, 287-297 http://cropscipublisher.com/index.php/fc 296 Conflict of Interest Disclosure The author affirms that this research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest. References Abid M., Gu S., Zhang Y., Sun S., Li Z., Bai D., Sun L., Qi X., Zhong Y., and Fang J., 2022, Comparative transcriptome and metabolome analysis reveal key regulatory defense networks and genes involved in enhanced salt tolerance of Actinidia (kiwifruit), Horticulture Research, 9: uhac189. https://doi.org/10.1093/hr/uhac189 Abid M., Zhang Y., Li Z., Bai D., Zhong Y., and Fang J., 2020, Effect of salt stress on growth, physiological and biochemical characters of four kiwifruit genotypes, Scientia Horticulturae, 271: 109473. https://doi.org/10.1016/j.scienta.2020.109473 Bai D., Li Z., Gu S., Li Q., Sun L., Qi X., Fang J., Zhong Y., and Hu C., 2022, Effects of kiwifruit rootstocks with opposite tolerance on physiological responses of grafting combinations under waterlogging stress, Plants, 11(16): 2098. https://doi.org/10.3390/plants11162098 Baldi E., Pastore C., Chiarelli G., Quartieri M., Spinelli F., and Toselli M., 2024, Molecular responses to drought and waterlogging stresses of kiwifruit (Actinidia chinensis var. deliciosa) potted vines, Horticulturae, 10(8): 834. Baxter A., Mittler R., and Suzuki N., 2014, ROS as key players in plant stress signalling, Journal of Experimental Botany, 65(5): 1229-1240. https://doi.org/10.1093/jxb/ert375 Gu G., Yang S., Yin X., Long Y., Ma Y., Li R., and Wang G., 2021, Sulfur induces resistance against canker caused by Pseudomonas syringae pv. actinidae via phenolic components increase and morphological structure modification in the kiwifruit stems, International Journal of Molecular Sciences, 22(22): 12185. https://doi.org/10.3390/ijms222212185 Hill M., Wurms K., Davy M., Gould E., Allan A., Mauchline N., Luo Z., Chee A., Stannard K., Storey R., and Rikkerink E., 2015, Transcriptome analysis of kiwifruit (Actinidia chinensis) bark in response to armoured scale insect (Hemiberlesia lataniae) feeding, PLoS One, 10(11): e0141664. https://doi.org/10.1371/journal.pone.0141664 Hossain M., Bhattacharjee S., Armin S., Qian P., Xin W., Li H., Burritt D., Fujita M., and Tran L., 2015, Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: insights from ROS detoxification and scavenging, Frontiers in Plant Science, 6: 420. https://doi.org/10.3389/fpls.2015.00420 Jin M., Gan S., Jiao J., He Y., Liu H., Yin X., Zhu Q., and Rao J., 2021, Genome-wide analysis of the bZIP gene family and the role of AchnABF1 from postharvest kiwifruit (Actinidia chinensis cv. Hongyang) in osmotic and freezing stress adaptations, Plant Science, 308: 110927. https://doi.org/10.1016/j.plantsci.2021.110927 Li M., Wu Z., Gu H., Cheng D., Guo X., Li L., Shi C., Xu G., Gu S., Abid M., Zhong Y., Qi X., and Chen J., 2021, AvNAC030, a NAC domain transcription factor, enhances salt stress tolerance in kiwifruit, International Journal of Molecular Sciences, 22(21): 11897. https://doi.org/10.3390/ijms222111897 Li Z., Bai D., Zhong Y., Lin M., Sun L., Qi X., Hu C., and Fang J., 2022, Full-length transcriptome and RNA-Seq analyses reveal the mechanisms underlying waterlogging tolerance in kiwifruit (Actinidia valvata), International Journal of Molecular Sciences, 23(6): 3237. https://doi.org/10.3390/ijms23063237 Li Z., Yang S., Ma Y., Sui Y., Xing H., Zhang W., Liao Q., and Jiang Y., 2023, Molecular mechanism of miR160d in regulating kiwifruit resistance to Botrytis cinerea, Journal of Agricultural and Food Chemistry, 71(27): 10304-10313. https://doi.org/10.1021/acs.jafc.3c02741 Lin M., Sun S., Fang J., Qi X., Sun L., Zhong Y., Sun Y., Hong G., Wang R., and Li Y., 2021, BSR-Seq analysis provides insights into the cold stress response of Actinidia arguta F1 populations, BMC Genomics, 22: 1-13. https://doi.org/10.1186/s12864-021-07369-9 Ling C., Liu Y., Yang Z., Xu J., Ouyang Z., Yang J., and Wang S., 2023, Genome-wide identification of HSF gene family in kiwifruit and the function of AeHSFA2b in salt tolerance, International Journal of Molecular Sciences, 24(21): 15638. https://doi.org/10.3390/ijms242115638 Liu X., Bulley S., Varkonyi-Gasic E., Zhong C., and Li D., 2023, Kiwifruit bZIP transcription factor AcePosF21 elicits ascorbic acid biosynthesis during cold stress, Plant Physiology, 192(2): 982-999. https://doi.org/10.1093/plphys/kiad121 Qu D., Yan F., Zhang Y., and Huang L., 2023, A 4D proteome investigation of the potential mechanisms of SA in triggering resistance in kiwifruit to Pseudomonas syringae pv. actinidiae, International Journal of Molecular Sciences, 24(24): 17448. https://doi.org/10.3390/ijms242417448 Reglinski T., Vanneste J., Wurms K., Gould E., Spinelli F., and Rikkerink E., 2013, Using fundamental knowledge of induced resistance to develop control strategies for bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidiae, Frontiers in Plant Science, 4: 24. https://doi.org/10.3389/fpls.2013.00024 Sardar A., 2023, Genetic amelioration of fruit and vegetable crops to increase biotic and abiotic stress resistance through CRISPR genome editing, Frontiers in Plant Science, 14: 1260102. https://doi.org/10.3389/fpls.2023.1260102
RkJQdWJsaXNoZXIy MjQ4ODYzNA==