FC_2024v7n5

Field Crop 2024, Vol.7, No.5, 278-286 http://cropscipublisher.com/index.php/fc 285 References Ahmad M., Hussain A., Dar A., Luqman M., Ditta A., Iqbal Z., Ahmad H., Nazli F., Soufan W., Almutairi K., and Sabagh A., 2023, Combating iron and zinc malnutrition through mineral biofortification in maize through plant growth promoting bacillus and paenibacillus species, Frontiers in Plant Science, 13: 1094551. https://doi.org/10.3389/fpls.2022.1094551 Aparo N., Olum S., Atimango A., Odongo W., Aloka B., Ongeng D., Gellynck X., and Steur H., 2023, Farmers’ intention to adopt agronomic biofortification: the case of iodine biofortified vegetables in Uganda, Horticulturae, 9(3): 401. https://doi.org/10.3390/horticulturae9030401 Augustine R., and Kalyanasundaram D., 2021, Effect of agronomic biofortification on growth, yield, uptake and quality characters of maize (Zea mays .L) through integrated management practices under North-eastern region of Tamil Nadu, India, Journal of Applied and Natural Science, 13: 278-286. https://doi.org/10.31018/JANS.V13I1.2539 Avnee, Sood S., Chaudhary D., Jhorar P., and Rana R., 2023, Biofortification: an approach to eradicate micronutrient deficiency, Frontiers in Nutrition, 10: 1233070. https://doi.org/10.3389/fnut.2023.1233070 Aziz M., Yaseen M., Abbas T., Naveed M., Mustafa A., Hamid Y., Saeed Q., and Minggang X., 2019, Foliar application of micronutrients enhances crop stand, yield and the biofortification essential for human health of different wheat cultivars, Journal of Integrative Agriculture, 18(6): 1369-1378. https://doi.org/10.1016/S2095-3119(18)62095-7 Bhardwaj A., Chejara S., Malik K., Kumar R., Kumar A., and Yadav R., 2022, Agronomic biofortification of food crops: An emerging opportunity for global food and nutritional security, Frontiers in Plant Science, 13: 1055278. https://doi.org/10.3389/fpls.2022.1055278 Botoman L., Nalivata P., Chimungu J., Munthali M., Bailey E., Ander E., Lark R., Mossa A., Young S., and Broadley M., 2020, Increasing zinc concentration in maize grown under contrasting soil types in Malawi through agronomic biofortification: trial protocol for a field experiment to detect small effect sizes, Plant Direct, 4(10): e00277. https://doi.org/10.1002/pld3.277 Bouis H., and Saltzman A., 2017, Improving nutrition through biofortification: a review of evidence from HarvestPlus, 2003 through 2016, Global Food Security, 12: 49-58. https://doi.org/10.1016/j.gfs.2017.01.009 Bouis H., and Welch R., 2010, Biofortification - a sustainable agricultural strategy for reducing micronutrient malnutrition in the global south, Crop Science, 50: 20-32. https://doi.org/10.2135/CROPSCI2009.09.0531 Cabrera-Soto L., Pixley K., Rosales-Nolasco A., Galicia-Flores L., and Palacios-Rojas N., 2018, Carotenoid and tocochromanol profiles during kernel development make consumption of biofortified "fresh" maize an option to improve micronutrient nutrition, Journal of Agricultural and Food Chemistry, 66(36): 9391-9398. https://doi.org/10.1021/acs.jafc.8b01886 Dhaliwal S., Sharma V., Shukla A., Shivay Y., Hossain A., Verma V., Gill M., Singh J., Bhatti S., Verma G., Singh J., and Singh P., 2022a, Agronomic biofortification of forage crops with Zn and Cu for enhancing nutritive potential-a systematic review, Journal of the Science of Food and Agriculture, 103(4): 1631-1643. https://doi.org/10.1002/jsfa.12353 Dhaliwal S., Sharma V., Shukla A., Verma V., Kaur M., Shivay Y., Nisar S., Gaber A., Brestič M., Bárek V., Skalický M., Ondrisik P., and Hossain A., 2022b, Biofortification-a frontier novel approach to enrich micronutrients in field crops to encounter the nutritional security, Molecules, 27(4): 1340. https://doi.org/10.3390/molecules27041340 Dwivedi S., Garcia-Oliveira A., Govindaraj M., and Ortiz R., 2023, Biofortification to avoid malnutrition in humans in a changing climate: enhancing micronutrient bioavailability in seed, tuber, and storage roots, Frontiers in Plant Science, 14: 1119148. https://doi.org/10.3389/fpls.2023.1119148 Feng X.Z., 2024, Genetic and environmental factors influencing grain quality in maize, Maize Genomics and Genetics, 15(2): 93-101. https://doi.org/10.5376/mgg.2024.15.0010 Galani Y., Orfila C., and Gong Y., 2020, A review of micronutrient deficiencies and analysis of maize contribution to nutrient requirements of women and children in Eastern and Southern Africa, Critical Reviews in Food Science and Nutrition, 62: 1568-1591. https://doi.org/10.1080/10408398.2020.1844636 Garg M., Sharma N., Sharma S., Kapoor P., Kumar A., Chunduri V., and Arora P., 2018, Biofortified crops generated by breeding, agronomy, and transgenic approaches are improving lives of millions of people around the world, Frontiers in Nutrition, 5: 12. https://doi.org/10.3389/fnut.2018.00012 Goredema-Matongera N., Ndhlela T., Magorokosho C., Kamutando C., Biljon A., and Labuschagne M., 2021, Multinutrient biofortification of maize (Zeamays L.) in Africa: current status, opportunities and limitations, Nutrients, 13(3): 1039. https://doi.org/10.3390/nu13031039 Grujcic D., Yazi̇ci̇ A., Tutus Y., Cakmak I., and Singh B., 2021, Biofortification of silage maize with zinc, iron and selenium as affected by nitrogen fertilization, Plants, 10(2): 391. https://doi.org/10.3390/plants10020391

RkJQdWJsaXNoZXIy MjQ4ODYzNA==