Field Crop 2024, Vol.7, No.5, 252-260 http://cropscipublisher.com/index.php/fc 259 Hane J., Ming Y., Kamphuis L., Nelson M., Garg G., Atkins C., Bayer P., Bravo A., Bringans S., Cannon S., Edwards D., Foley R., Gao L., Harrison M., Huang W., Hurgobin B., Li S., Liu C., McGrath A., Morahan G., Murray J., Weller J., Jian J., and Singh K., 2016, A comprehensive draft genome sequence for lupin (Lupinus angustifolius), an emerging health food: insights into plant-microbe interactions and legume evolution, Plant Biotechnology Journal, 15(3): 318-330. https://doi.org/10.1111/pbi.12615 Iqbal M., Mamidi S., Ahsan R., Kianian S., Coyne C., Hamama A., Narina S., and Bhardwaj H., 2012, Population structure and linkage disequilibrium in Lupinus albus L. germplasm and its implication for association mapping, Theoretical and Applied Genetics, 125: 517-530. https://doi.org/10.1007/s00122-012-1850-6 Książkiewicz M., Nazzicari N., Yang H., Nelson M., Renshaw D., Rychel S., Ferrari B., Carelli M., Tomaszewska M., Stawiński S., Naganowska B., Wolko B., and Annicchiarico P., 2017, A high-density consensus linkage map of white lupin highlights synteny with narrow-leafed lupin and provides markers tagging key agronomic traits, Scientific Reports, 7(1): 15335. https://doi.org/10.1038/s41598-017-15625-w Książkiewicz M., Wyrwa K., Szczepaniak A., Rychel S., Majcherkiewicz K., Przysiecka Ł., Karłowski W., Wolko B., and Naganowska B., 2013, Comparative genomics of Lupinus angustifolius gene-rich regions: BAC library exploration, genetic mapping and cytogenetics, BMC Genomics, 14: 1-16. https://doi.org/10.1186/1471-2164-14-79 Lambers H., Clements J., and Nelson M., 2013, How a phosphorus-acquisition strategy based on carboxylate exudation powers the success and agronomic potential of lupines (Lupinus, Fabaceae), American Journal of Botany, 100(2): 263-288. https://doi.org/10.3732/ajb.1200474 Lichtin N., Salvo-Garrido H., Till B., Caligari P., Rupayan A., Westermeyer F., and Olivos M., 2020, Genetic and comparative mapping of Lupinus luteus L. highlight syntenic regions with major orthologous genes controlling anthracnose resistance and flowering time, Scientific Reports, 10(1): 19174. https://doi.org/10.1038/s41598-020-76197-w Martin G., Rousseau-Gueutin M., Cordonnier S., Lima O., Michon-Coudouel S., Naquin D., Carvalho J., Aïnouche M., Salmon A., and Aïnouche A., 2014, The first complete chloroplast genome of the Genistoid legume Lupinus luteus: evidence for a novel major lineage-specific rearrangement and new insights regarding plastome evolution in the legume family, Annals of botany, 113(7): 1197-1210. https://doi.org/10.1093/aob/mcu050 Msaddak A., Mars M., Quiñones M., Lucas M., and Pueyo J., 2023, Lupin, a unique legume that is nodulated by multiple microsymbionts: the role of horizontal gene transfer, International Journal of Molecular Sciences, 24(7): 6496. https://doi.org/10.3390/ijms24076496 Parra-González L., Aravena-Abarzúa G., Navarro-Navarro C., Udall J., Maughan J., Peterson L., Salvo-Garrido H., and Maureira-Butler I., 2012, Yellow lupin (Lupinus luteus L.) transcriptome sequencing: molecular marker development and comparative studies, BMC Genomics, 13: 1-15. https://doi.org/10.1186/1471-2164-13-425 Pecetti L., Annicchiarico P., Crosta M., Notario T., Ferrari B., and Nazzicari N., 2023, White lupin drought tolerance: genetic variation, trait genetic architecture, and genome-enabled prediction, International Journal of Molecular Sciences, 24(3): 2351. https://doi.org/10.3390/ijms24032351 Plewiński P., Ćwiek-Kupczyńska H., Rudy E., Bielski W., Rychel-Bielska S., Stawiński S., Barzyk P., Krajewski P., Naganowska B., Wolko B., and Książkiewicz M., 2020, Innovative transcriptome-based genotyping highlights environmentally responsive genes for phenology, growth and yield in a non-model grain legume, Plant, Cell & Environment, 43(11): 2680-2698. https://doi.org/10.1111/pce.13880 Plewiński P., Książkiewicz M., Rychel-Bielska S., Rudy E., and Wolko B., 2019, Candidate domestication-related genes revealed by expression quantitative trait loci mapping of narrow-leafed lupin (Lupinus angustifolius L.), International Journal of Molecular Sciences, 20(22): 5670. https://doi.org/10.3390/ijms20225670 Rychel-Bielska S., Plewiński P., Kozak B., Galek R., and Książkiewicz M., 2020, Photoperiod and vernalization control of flowering-related genes: a case study of the narrow-leafed lupin (Lupinus angustifolius L.), Frontiers in Plant Science, 11: 572135. https://doi.org/10.3389/fpls.2020.572135 Rychel-Bielska S., Surma A., Bielski W., Kozak B., Galek R., and Książkiewicz M., 2021, Quantitative control of early flowering in white lupin (Lupinus albus L.), International Journal of Molecular Sciences, 22(8): 3856. https://doi.org/10.3390/ijms22083856 Spina A., Saletti R., Fabroni S., Natalello A., Cunsolo V., Scarangella M., Rapisarda P., Canale M., and Muccilli V., 2022, Multielemental, nutritional, and proteomic characterization of different Lupinus spp. genotypes: a source of nutrients for dietary use, Molecules, 27(24): 8771. https://doi.org/10.3390/molecules27248771 Susek K., Braszewska-Zalewska a., Bewick A., Hasterok R., Schmitz R., and Naganowska B., 2017, Epigenomic diversification within the genus Lupinus, PLoS ONE, 12(6): e0179821. https://doi.org/10.1371/journal.pone.0179821 Taylor C., Kamphuis L., Zhang W., Garg G., Berger J., Mousavi‐Derazmahalleh M., Bayer P., Edwards D., Singh K., Cowling W., and Nelson M., 2018, INDEL variation in the regulatory region of the major flowering time gene LanFTc1 is associated with vernalization response and flowering time in narrow‐leafed lupin (Lupinus angustifolius L.), Plant, Cell & Environment, 42(1): 174-187. https://doi.org/10.1111/pce.13320
RkJQdWJsaXNoZXIy MjQ4ODYzNA==