FC_2024v7n5

Field Crop 2024, Vol.7, No.5, 243-251 http://cropscipublisher.com/index.php/fc 250 Jiang Y., Carrijo D., Huang S., Chen J., Balaine N., Zhang W., Groenigen K., and Linquist B., 2019, Water management to mitigate the global warming potential of rice systems: a global meta-analysis, Field Crops Research, 234: 47-54. https://doi.org/10.1016/J.FCR.2019.02.010 Jiang Y., Qian H., Wang L., Feng J., Huang S., Hungate B., Kessel C., Horwath W., Zhang X., Qin X., Li Y., Feng X., Zhang J., Deng A., Zheng C., Song Z., Hu S., Groenigen K., and Zhang W., 2018, Limited potential of harvest index improvement to reduce methane emissions from rice paddies, Global Change Biology, 25(2): 686-698. https://doi.org/10.1111/gcb.14529 Kumar A., Nayak A., Das B., Panigrahi N., Dasgupta P., Mohanty S., Kumar U., Panneerselvam P., and Pathak H., 2019, Effects of water deficit stress on agronomic and physiological responses of rice and greenhouse gas emission from rice soil under elevated atmospheric CO2, Science of the Total Environment, 650: 2032-2050. https://doi.org/10.1016/j.scitotenv.2018.09.332 Lansing J., Kremer J., Suryawan I., Sathiakumar S., Jacobs G., Chung N., and Wiguna I., 2023, Adaptive irrigation management by Balinese farmers reduces greenhouse gas emissions and increases rice yields, Philosophical Transactions of the Royal Society B, 378(1889): 20220400. https://doi.org/10.1098/rstb.2022.0400 Liang K.W., 2024, Enhancing the efficiency of converting agricultural waste into biomethane using anaerobic digestion technology, Journal of Energy Bioscience, 15(2): 118-131. https://doi.org/10.5376/jeb.2024.15.0012 Linquist B., Groenigen K., Adviento-Borbe M., Pittelkow C., and Kessel C., 2012, An agronomic assessment of greenhouse gas emissions from major cereal crops, Global Change Biology, 18(1): 194-209. https://doi.org/10.1111/j.1365-2486.2011.02502.x Liu S., Hu Z., Wu S., Li S., Li Z., and Zou J., 2016, Methane and nitrous oxide emissions reduced following conversion of rice paddies to inland crab-fish aquaculture in Southeast China, Environmental Science & Technology, 50(2): 633-642. https://doi.org/10.1021/acs.est.5b04343 Malumpong C., Ruensuk N., Rossopa B., Channu C., Intarasathit W., Wongboon W., Poathong K., and Kunket K., 2020, Alternate wetting and drying (AWD) in broadcast rice (Oryza sativa L.) management to maintain yield, conserve water, and reduce gas emissions in Thailand, Agricultural Research, 10: 116-130. https://doi.org/10.1007/s40003-020-00483-2 Malyan S., Bhatia A., Kumar A., Gupta D., Singh R., Kumar S., Tomer R., Kumar O., and Jain N., 2016, Methane production, oxidation and mitigation: A mechanistic understanding and comprehensive evaluation of influencing factors, Science of the Total Environment, 572: 874-896. https://doi.org/10.1016/j.scitotenv.2016.07.182 Oda M., and Chiếm N., 2019, Rice plants reduce methane emissions in high-emitting paddies, F1000Research, 7: 1349. https://doi.org/10.12688/f1000research.15859.2 Runkle B., Suvočarev K., Reba M., Reavis C., Smith S., Chiu Y., and Fong B., 2018, Methane emission reductions from the alternate wetting and drying of rice fields detected using the eddy covariance method, Environmental Science & Technology, 53(2): 671-681. https://doi.org/10.1021/acs.est.8b05535 Shang Z., Abdalla M., Xia L., Zhou F., Sun W., and Smith P., 2021, Can cropland management practices lower net greenhouse emissions without compromising yield? Global Change Biology, 27(19): 4657-4670. https://doi.org/10.1111/gcb.15796 Sriphirom P., Chidthaisong A., and Towprayoon S., 2019, Effect of alternate wetting and drying water management on rice cultivation with low emissions and low water used during wet and dry season, Journal of Cleaner Production, 223: 980-988. https://doi.org/10.1016/J.JCLEPRO.2019.03.212 Sriphirom P., Chidthaisong A., Yagi K., Tripetchkul S., and Towprayoon S., 2020, Evaluation of biochar applications combined with alternate wetting and drying (AWD) water management in rice field as a methane mitigation option for farmers’ adoption, Soil Science and Plant Nutrition, 66(1): 235-246. https://doi.org/10.1080/00380768.2019.1706431 Sun W.J., and Qian Q.S.,2024, Long-term effects of rice cultivation on soil organic nitrogen dynamics, Rice Genomics and Genetics, 15(4): 203-211. https://doi.org/10.5376/rgg.2024.15.0020 Sun W., Xiao E., Pu Z., Krumins V., Dong Y., Li B., and Hu M., 2018, Paddy soil microbial communities driven by environment- and microbe-microbe interactions: A case study of elevation-resolved microbial communities in a rice terrace, Science of the Total Environment, 612: 884-893. https://doi.org/10.1016/j.scitotenv.2017.08.275 Thanuja K., and Karthikeyan S., 2020, Exploring bio-mitigation strategies to reduce carbon footprint in wetland paddy system, Bioresource Technology Reports, 12: 100557. https://doi.org/10.1016/j.biteb.2020.100557 Wang H., Zhang Y., Zhang Y., McDaniel M., Sun L., Su W., Fan X., Liu S., and Xiao X., 2020, Water-saving irrigation is a ‘win-win’ management strategy in rice paddies-with both reduced greenhouse gas emissions and enhanced water use efficiency, Agricultural Water Management, 228: 105889. https://doi.org/10.1016/j.agwat.2019.105889 Wu Z., Zhang X., Dong Y., Li B., Li B., and Xiong Z., 2019, Biochar amendment reduced greenhouse gas intensities in the rice-wheat rotation system: six-year field observation and meta-analysis, Agricultural and Forest Meteorology, 278: 107625. https://doi.org/10.1016/j.agrformet.2019.107625

RkJQdWJsaXNoZXIy MjQ4ODYzNA==