FC_2024v7n4

Field Crop 2024, Vol.7, No.4, 212-221 http://cropscipublisher.com/index.php/fc 221 Razzaq A., Zafar M., Ali A., Li P., Qadir F., Zahra L., Shaukat F., Laghari A., Yuan Y., and Gǒng W., 2023, Biotechnology and solutions: insect-pest-resistance management for improvement and development of Bt cotton (Gossypium hirsutumL.), Plants, 12(23): 4071. https://doi.org/10.3390/plants12234071 PMid:38068706 PMCid:PMC10708160 Rosa A., and Grammatikos S., 2019, Comparative life cycle assessment of cotton and other natural fibers for textile applications, Fibers, 7(12): 101. https://doi.org/10.3390/fib7120101 Tahmasebi A., Ashrafi‐Dehkordi E., Shahriari A., Mazloomi S., and Ebrahimie E., 2019, Integrative meta-analysis of transcriptomic responses to abiotic stress in cotton, Progress in Biophysics and Molecular Biology, 146: 112-122. https://doi.org/10.1016/j.pbiomolbio.2019.02.005 PMid:30802474 Tarazi R., and Vaslin M., 2022, The viral threat in cotton: how new and emerging technologies accelerate virus identification and virus resistance breeding, Frontiers in Plant Science, 13: 851939. https://doi.org/10.3389/fpls.2022.851939 PMid:35449884 PMCid:PMC9016188 Ul-Allah S., Rehman A., Hussain M., and Farooq M., 2021, Fiber yield and quality in cotton under drought: effects and management, Agricultural Water Management, 255: 106994. https://doi.org/10.1016/j.agwat.2021.106994 Wang H., Chen B., Tian J., and Kong Z., 2020, Verticillium dahliae VdBre1 is required for cotton infection by modulating lipid metabolism and secondary metabolites, Environmental Microbiology, 23(4): 1991-2003. https://doi.org/10.1111/1462-2920.15319 PMid:33185953 Wu P., Lu C., Wang B., Zhang F., Shi L., Xu Y., Chen A., Si H., Su J., and Wu J., 2023, Cotton RSG2 mediates plant resistance against Verticillium dahliae by miR482b regulation, Biology, 12(7): 898. https://doi.org/10.3390/biology12070898 PMid:37508331 PMCid:PMC10376429 Zhang J., and Wedegaertner T., 2021, Genetics and breeding for glandless upland cotton with improved yield potential and disease resistance: a review, Frontiers in Plant Science, 12: 753426. https://doi.org/10.3389/fpls.2021.753426 PMid:34691130 PMCid:PMC8526788 Zhang J., Abdelraheem A., Zhu Y., Wheeler T., Dever J., Frelichowski J., Love J., Ulloa M., Jenkins J., McCarty J., Nichols R., and Wedegaertner T., 2020, Assessing genetic variation for Fusariumwilt race 4 resistance in tetraploid cotton by screening over three thousand germplasm lines under greenhouse or controlled conditions, Euphytica, 216: 1-16. https://doi.org/10.1007/s10681-020-02646-2 Zhu H., Song J., Dhar N., Shan Y., Ma X., Wang X., Chen J., Dai X., Li R., and Wang Z., 2021, Transcriptome analysis of a cotton cultivar provides insights into the differentially expressed genes underlying heightened resistance to the devastating Verticilliumwilt, Cells, 10(11): 2961. https://doi.org/10.3390/cells10112961 PMid:34831184 PMCid:PMC8616101 Zhu Y., Zhao M., Li T., Wang L., Liao C., Liu D., Zhang H., Zhao Y., Liu L., Ge X., and Li B., 2023, Interactions between Verticillium dahliae and cotton: pathogenic mechanism and cotton resistance mechanism to Verticilliumwilt, Frontiers in Plant Science, 14: 1174281. https://doi.org/10.3389/fpls.2023.1174281 PMid:37152175 PMCid:PMC10161258

RkJQdWJsaXNoZXIy MjQ4ODYzNA==