FC_2024v7n4

Field Crop 2024, Vol.7, No.4, 201-211 http://cropscipublisher.com/index.php/fc 210 Muratov A., Epifantsev V., and Tikhonchuk P., 2023, Competitiveness of triticale among spring crops of the Amur region, E3S Web of Conferences. EDP Sciences, 371: 01082. https://doi.org/10.1051/e3sconf/202337101082 Mustapha K., Zubairu H., and Adamu A., 2019, Comparison of nutritional values of wheat (Triticum aestivum) and acha (Digitaria exilis) grains, Bayero Journal of Pure and Applied Sciences, 11(1): 133-138. https://doi.org/10.4314/bajopas.v11i1.22S Oldfield E., Bradford M., and Wood S., 2018, Global meta-analysis of the relationship between soil organic matter and crop yields, Soil, 5(1): 15-32. https://doi.org/10.5194/soil-5-15-2019 Pang Y., Liu C., Wang D., Amand P., Bernardo A., Li W., He F., Li L., Wang L., Yuan X., Dong L., Su Y., Zhang H., Zhao M., Liang Y., Jia H., Shen X., Lu Y., Jiang H., Wu Y., Li A., Wang H., Kong L., Bai G., and Liu S., 2020, High-resolution genome-wide association study identifies genomic regions and candidate genes for important agronomic traits in wheat, Molecular plant, 13(9): 1311-1327. https://doi.org/10.1016/j.molp.2020.07.008 PMid:32702458 Schillinger W., and Archer D., 2020, Winter triticale: a long-term cropping systems experiment in a dry Mediterranean climate, Agronomy, 10(11): 1777. https://doi.org/10.3390/agronomy10111777 Severini A., Wasson A., Evans J., Richards R., and Watt M., 2020, Root phenotypes at maturity in diverse wheat and triticale genotypes grown in three field experiments: Relationships to shoot selection, biomass, grain yield, flowering time, and environment, Field Crops Research, 255: 107870. https://doi.org/10.1016/j.fcr.2020.107870 Shariatipour N., Heidari B., Tahmasebi A., and Richards C., 2021, Comparative genomic analysis of quantitative trait loci associated with micronutrient contents, grain quality, and agronomic traits in wheat (Triticum aestivumL.), Frontiers in Plant Science, 12: 709817. https://doi.org/10.3389/fpls.2021.709817 PMid:34712248 PMCid:PMC8546302 Shaukat M., Sun M., Ali M., Mahmood T., Naseer S., Maqbool S., Rehman S., Mahmood Z., Hao Y., Xia X., Rasheed A., and He Z., 2021, Genetic gain for grain micronutrients and their association with phenology in historical wheat cultivars released between 1911 and 2016 in Pakistan, Agronomy, 11(6): 1247. https://doi.org/10.3390/agronomy11061247 Sher A., Nawaz M., Hasnain Z., Mehmood K., Chattha M., Ijaz M., Sattar A., Ibrar D., Bashir S., Khan M., Gul S., Irshad S., Fahad S., Ahmed N., Habibullah, Rais A., and Khan S., 2022, Impact of press mud and animal manure in comparison with NPK on the growth and yield of triticale (Triticosecale wittmack) genotypes cultivated under various irrigation regimes, Agronomy, 12(12): 2944. https://doi.org/10.3390/agronomy12122944 Skowrońska R., Mariańska M., Ulaszewski W., Tomkowiak A., Nawracała J., and Kwiatek M., 2020, Development of triticale×wheat prebreeding germplasm with loci for slow-rusting resistance, Frontiers in Plant Science, 11: 447. https://doi.org/10.3389/fpls.2020.00447 PMid:32457768 PMCid:PMC7221182 Sousa T., Ribeiro M., Sabença C., and Igrejas G., 2021, The 10,000-year success story of wheat! Foods, 10(9): 2124. https://doi.org/10.3390/foods10092124 PMid:34574233 PMCid:PMC8467621 Tamagno S., Pittelkow C., Fohner G., Nelsen T., Hegarty J., Carter C., Vang T., and Lundy M., 2022, Optimizing water and nitrogen productivity of wheat and triticale across diverse production environments to improve the sustainability of baked products, Frontiers in Plant Science, 13: 952303. https://doi.org/10.3389/fpls.2022.952303 PMid:36161023 PMCid:PMC9491324 Upreti S., Ghimire R., Singh N., Bhandari G., and Banskota N., 2022, Production performance and nutrient composition of fodder triticale (x Triticosecale W.), Journal of Nepal Agricultural Research Council, 8: 101-114. https://doi.org/10.3126/jnarc.v8i.44871 Vieira E., Albuquerque C., Rigueira J., Gomes V., Coelho M., Júnior V., Monção F., Santana I., Hora F., and Gomes M., 2022, Production and nutritional value of wheat and triticale cultivars in different harvest times in the Minas Gerais semiarid, Semina Ciências Agrárias, 43(1): 381-396. https://doi.org/10.5433/1679-0359.2022v43n1p381 Wan C., Dang P., Gao L., Wang J., Tao J., Qin X., Feng B., and Gao J., 2022, How does the environment affect wheat yield and protein content response to drought? a meta-analysis, Frontiers in Plant Science, 13: 896985. https://doi.org/10.3389/fpls.2022.896985 PMid:35845696 PMCid:PMC9280411 Xu R.G., and Su Q.X., 2024, Molecular tools and genomic resources in triticeae: enhancing crop productivity, Triticeae Genomics and Genetics, 15(2): 66-76. Yahya M., Rasul M., Hussain S., Dilawar A., Ullah M., Rajput L., Afzal A., Asif M., Wubet T., and Yasmin S., 2023, Integrated analysis of potential microbial consortia, soil nutritional status, and agro-climatic datasets to modulate P nutrient uptake and yield effectiveness of wheat under climate change resilience, Frontiers in Plant Science, 13: 1074383. https://doi.org/10.3389/fpls.2022.1074383 PMid:36714699 PMCid:PMC9878846

RkJQdWJsaXNoZXIy MjQ4ODYzNA==