FC_2024v7n3

Field Crop 2024, Vol.7, No.3, 145-157 http://cropscipublisher.com/index.php/fc 157 Nirmala B., Tuti M., Kumar R., Waris A., Muthuraman P., Parmar B., and Singh T., 2021, Integrated assessment of system of rice intensification vs. conventional method of transplanting for economic benefit, energy efficiency and lower global warming potential in India, Agroecology and Sustainable Food Systems, 45(5): 745-766. https://doi.org/10.1080/21683565.2020.1868648 Ogino A., Thu N., Hosen Y., Izumi T., Suzuki T., Sakai T., Ando S., Osada T., and Kawashima T., 2021, Environmental impacts of a rice-beef-biogas integrated system in the Mekong Delta, Vietnam evaluated by life cycle assessment, Journal of environmental management, 294: 112900. https://doi.org/10.1016/j.jenvman.2021.112900 PMid:34111596 Phụ H., Linh H., and Trà L., 2021, The advantages of the system of rice intensification (SRI) in environmental protection and climate change mitigation in rice production-a review, International Rice Congress, 226(9): 11-21. https://doi.org/10.34238/TNU-JST.4343 Sarkar S.; Skalicky M.; Hossain A.; Brestic M.; Saha S.; Garai S.; Ray K., and Brahmachari K., 2020, Management of crop residues for improving input use efficiency and agricultural sustainability, Sustainability, 12(23): 9808. https://doi.org/10.3390/su12239808 Shang Z., Abdalla M., Xia L., Zhou F., Sun W., and Smith P., 2021, Can cropland management practices lower net greenhouse emissions without compromising yield, Global Change Biology, 27(19): 4657-4670 https://doi.org/10.1111/gcb.15796 PMid:34241939 Shew A., Durand‐Morat A., Putman B., Nalley L., and Ghosh A., 2019, Rice intensification in Bangladesh improves economic and environmental welfare, Environmental Science & Policy, 95: 46-57. https://doi.org/10.1016/J.ENVSCI.2019.02.004 Sun G., Sun M., Du L., Zhang Z., Wang Z., Zhang G., Nie S., Xu H., and Wang H., 2021, Ecological rice-cropping systems mitigate global warming - a meta-analysis, Science of the Total Environment, 789: 147900. https://doi.org/10.1016/j.scitotenv.2021.147900 PMid:34323843 Tayefeh M., Sadeghi S., Noorhosseini S., Bacenetti J., and Damalas C., 2018, Environmental impact of rice production based on nitrogen fertilizer use, Environmental Science and Pollution Research, 25: 15885-15895. https://doi.org/10.1007/s11356-018-1788-6 PMid:29589233 Toolkiattiwong P., Arunrat N., and Sereenonchai S., 2023, Environmental, human and ecotoxicological impacts of different rice cultivation systems in Northern Thailand, International Journal of Environmental Research and Public Health, 20(3): 2738. https://doi.org/10.3390/ijerph20032738 PMid:36768102 PMCid:PMC9916391 Ullah A., Nawaz A., Farooq M., and Siddique K., 2021, Agricultural innovation and sustainable development: a case study of rice–wheat cropping systems in South Asia, Sustainability, 13(4): 1965. https://doi.org/10.3390/SU13041965 Win E., Win K., Bellingrath-Kimura S., and Oo A., 2021, Influence of rice varieties, organic manure and water management on greenhouse gas emissions from paddy rice soils, PLoS ONE, 16(6): e0253755. https://doi.org/10.1371/journal.pone.0253755 PMid:34191848 PMCid:PMC8244889 Yang B., Ma Y., Zhang C., Jia Y., Li B., and Zheng X., 2019, Cleaner production technologies increased economic benefits and greenhouse gas intensity in an eco-rice system in China, Sustainability, 11(24): 7090. https://doi.org/10.3390/su11247090 Yao Z., Zheng X., Wang R., Liu C., Lin, S., and Butterbach‐Bahl K., 2019, Benefits of integrated nutrient management on N2O and NO mitigations in water-saving ground cover rice production systems, Science of the Total Environment, 646: 1155-1163. https://doi.org/10.1016/j.scitotenv.2018.07.393 PMid:30235601

RkJQdWJsaXNoZXIy MjQ4ODY0NQ==