FC_2024v7n3

Field Crop 2024, Vol.7, No.3, 124-133 http://cropscipublisher.com/index.php/fc 133 Khanna V., 2018, Effect of maize production in a changing climate: its impacts, adaptation, and mitigation strategies through breeding, Open Access Journal of Oncology and Medicine, 3: 24. https://doi.org/10.32474/oajom.2018.02.000142 Li T.C., Yang H.Y., Liu G.H., Zhang W., Dong Q., Lei Y.L., Qian Y.L., Zhou Y.B., and Chen H.J., 2017, Advances on molecular mechanism of anthocyanins biosynthesis for maize seed, Molecular Plant Breeding, 15(7): 2623-2627. Liu Z., Garcia A., McMullen M.D., and Flint-Garcia S.A., 2016, Genetic analysis of kernel traits in maize-teosinte introgression populations, G3: Genes, Genomes, Genetics, 6(8): 2523-2530. https://doi.org/10.1534/g3.116.030155 Nuss E., and Tanumihardjo S., 2010, Maize: a paramount staple crop in the context of global nutrition, Comprehensive Reviews in Food Science and Food Safety, 9(4): 417-436. https://doi.org/10.1111/J.1541-4337.2010.00117.X Palacios-Rojas N., McCulley L., Kaeppler M., Titcomb T., Gunaratna N., Lopez-Ridaura S., and Tanumihardjo S., 2020, Mining maize diversity and improving its nutritional aspects within agro-food systems, Comprehensive Reviews in Food Science and Food Safety, 19(4): 1809-1834. https://doi.org/10.1111/1541-4337.12552 Ruanjaichon V., Khammona K., Thunnom B., Suriharn K., Kerdsri C., Aesomnuk W., and Toojinda T., 2021, Identification of gene associated with sweetness in corn (Zea mays L.) by genome-wide association study (GWAS) and development of a functional SNP marker for predicting sweet corn, Plants, 10(6): 1239. https://doi.org/10.3390/plants10061239 Sahito J.H., Zhang H., Gishkori Z.G.N., Ma C., Wang Z., Ding D., and Tang J., 2024, Advancements and prospects of genome-wide association studies (GWAS) in maize, International Journal of Molecular Sciences, 25(3): 1918. https://doi.org/10.3390/ijms25031918 Shiferaw B., Prasanna B.M., Hellin J., and Bänziger M., 2011, Crops that feed the world, past successes and future challenges to the role played by maize in global food security, Food Security,3: 307-327. Sinyolo S., 2020, Technology adoption and household food security among rural households in south africa: the role of improved maize varieties, Technology in Society, 60: 101214. https://doi.org/10.1016/j.techsoc.2019.101214 Tanumihardjo S., McCulley L., Roh R., Lopez-Ridaura S., Palacios-Rojas N., and Gunaratna N., 2020, Maize agro-food systems to ensure food and nutrition security in reference to the sustainable development goals, Global Food Security, 25: 100327. https://doi.org/10.1016/j.gfs.2019.100327 Tian Z., Wang J., Li J., and Han B., 2020, Designing future crops: challenges and strategies for sustainable agriculture, The Plant Journal: for Cell and Molecular Biology, 11: 7. https://doi.org/10.1111/tpj.15107 Tyczewska A., Woźniak E., Gracz J., Kuczyński J., and Twardowski T., 2018, Towards food security: current state and future prospects of agrobiotechnology, Trends in Biotechnology, 36(12): 1219-1229 . https://doi.org/10.1016/j.tibtech.2018.07.008 Uffelmann E., Huang Q.Q., Munung N.S., De Vries J., Okada Y., Martin A.R., Lappalainen T., and Posthuma D., 2021, Genome-wide association studies, Nature Reviews Methods Primers, 1(1): 59. https://doi.org/10.1038/s43586-021-00056-9 Ulrike G., Fasse A., and Erenstein O., 2021, Food security and the dynamics of wheat and maize value chains in africa and asia, Frontiers in Sustainable Food Systems, 4: 617009. Zheng H., Bian Q., Yin Y., Ying H., Yang Q., and Cui Z., 2018, Closing water productivity gaps to achieve food and water security for a global maize supply, Scientific Reports, 8: 4. https://doi.org/10.1038/s41598-018-32964-4

RkJQdWJsaXNoZXIy MjQ4ODY0NQ==