FC_2024v7n3

Field Crop 2024, Vol.7, No.3, 124-133 http://cropscipublisher.com/index.php/fc 132 Acknowledgments The authors thanks the two anonymous peer reviewers for their thorough review of this study and for their valuable suggestions for improvement. Conflict of Interest Disclosure The authors affirm that this research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest. References Abideen Z., Hassan T., Arshad F., Zafar N., Ammar A., Aleem A., Ahmad R., Khalid M., and Amjad I., 2023, Advances and challenges in wheat genetics and breeding for global food security, Biological and Agricultural Sciences Research Journal, 10: 27. https://doi.org/10.54112/basrj.v2023i1.27 Aguk J., Onwonga R., Cheminingwa G., Jumbo M., and George A., 2021, Enhancing yellow maize production for sustainable food and nutrition security in kenya, East African Journal of Science, Technology and Innovation, 2: 7. https://doi.org/10.37425/eajsti.v2i.341 Babu S., Mohapatra K., Das A., Yadav G., Tahasildar M., Singh R., Panwar A., Yadav V., and Chandra P., 2020, Designing energy-efficient, economically sustainable and environmentally safe cropping system for the rainfed maize-fallow land of the eastern himalayas, The Science of the Total Environment, 722: 137874. https://doi.org/10.1016/j.scitotenv.2020.137874 Chinthiya A., Ganesan K.N., Ravikesavan R., and Senthil N., 2019, Combining ability and association studies on different yield contributing traits for enhanced green cob yield in sweet corn (Zeamays con Var saccharata), Electronic Journal of Plant Breeding, 10(2): 500-511. https://doi.org/10.5958/0975-928X.2019.00063.2 Cortes L.T., Zhang Z., and Yu J., 2021, Status and prospects of genome-wide association studies in plants, The Plant Genome, 14(1): e20077. https://doi.org/10.1002/tpg2.20077 de Souza Camacho L.R., Coan M.M.D., Scapim C.A., Barth Pinto R.J., Tessmann D.J., and Contreras‐Soto R.I., 2019, A genome‐wide association study for partial resistance to southern corn rust in tropical maize, Plant Breeding, 138(6): 770-780. https://doi.org/10.1111/pbr.12718 Ekpa O., Palacios-Rojas N., Kruseman G., Fogliano V., and Linnemann A., 2019, Sub-saharan african maize-based foods - processing practices, challenges and opportunities, Food Reviews International, 35: 609-639. https://doi.org/10.1080/87559129.2019.1588290 Farooq A., Farooq N., Akbar H., Hassan Z., and Gheewala S., 2023, A critical review of climate change impact at a global scale on cereal crop production, Agronomy, 33: 62. https://doi.org/10.3390/agronomy13010162 Gong F., Wu X., Zhang H., Chen Y., and Wang W., 2015, Making better maize plants for sustainable grain production in a changing climate, Frontiers in Plant Science, 6: 35. https://doi.org/10.3389/fpls.2015.00835 Grote U., Faße A., Nguyen T., and Erenstein O., 2021, Food security and the dynamics of wheat and maize value chains in africa and asia, Frontiers in Sustainable Food Systems, 4: 9. https://doi.org/10.3389/fsufs.2020.617009 Guo J.J., Liu W.S., Zheng Y.X., Liu H., Zhao Y.F., Zhu L.Y., Huang Y.Q., Jia X.Y., and Chen J.T., 2019, Genome-wide association analysis of maize (Zeamays) grain quality related traits based on four test cross populations, Nongye Shengwu Jishu Xuebao (Journal of Agricultural Biotechnology), 27(5): 809-824. Guo X., Ge Z., Wang M., Zhao M., Pei Y., and Song X., 2023, Genome-wide association study of quality traits and starch pasting properties of maize kernels, BMC Genomics, 24(1): 59. https://doi.org/10.1186/s12864-022-09031-4 Hao H.Q., Liu L.L., Yao Y., Feng X., Li Z.G., Chao Q., Xia R., Liu H.T., Wang B.C., Qin F., Xie Q., and Jing H.C., 2018, Application and prospect of molecular module-based crop design technology in maize breeding, Zhongguo Kexueyuan Yuankan (Bulletin of Chinese Academy of Sciences), 33(9): 923-931. Hua K., Zhang J., Botella J.R., Ma C., Kong F., Liu B., and Zhu J.K., 2019, Perspectives on the application of genome-editing technologies in crop breeding, Molecular Plant, 12(8): 1047-1059. https://doi.org/10.1016/j.molp.2019.06.009 Huang M., Wang J., Wang B., Liu D., Yu Q., He D., Wang N., and Pan X., 2020, Optimizing sowing window and cultivar choice can boost china’s maize yield under 1.5 °C and 2 °C global warming, Environmental Research Letters, 15: 66. https://doi.org/10.1088/1748-9326/ab66ca Karnatam K., Mythri B., Nisa W., Sharma H., Meena T., Rana P., Vikal Y., Gowda M., Dhillon B., and Sandhu S., 2023, Silage maize as a potent candidate for sustainable animal husbandry development—perspectives and strategies for genetic enhancement, Frontiers in Genetics, 14: 32. https://doi.org/10.3389/fgene.2023.1150132

RkJQdWJsaXNoZXIy MjQ4ODY0NQ==