FC_2024v7n2

Field Crop 2024, Vol.7, No.2, 45-57 http://cropscipublisher.com/index.php/fc 57 Otegui M., Riglos M., and Mercau J., 2021, Genetically modified maize hybrids and delayed sowing reduced negative drought effects across a rainfall gradient in temperate Argentina, Journal of Experimental Botany, 72(14): 5180-5188. https://doi.org/10.1093/jxb/erab139 PMid:33770157 Phipps R., and Park J., 2002, Environmental benefits of genetically modified crops: Global and European perspectives on their ability to reduce pesticide use, Journal of Animal and Feed Sciences, 11(1): 1-18. https://doi.org/10.22358/jafs/67788/2002 Powell J., Levy-Booth D., Gulden R., Asbil W., Campbell R., Dunfield K., Hamill A., Hart M., Lerat S., Nurse R., Pauls K., Sikkema P., Swanton C., Trevors J., and Klironomos J., 2009, Effects of genetically modified, herbicide-tolerant crops and their management on soil food web properties and crop litter decomposition, Journal of Applied Ecology, 46: 388-396. https://doi.org/10.1111/j.1365-2664.2009.01617.x Qaim M., 2009, The economics of genetically modified crops, Annual Review of Resource Economics, 1: 665-694. https://doi.org/10.1146/annurev.resource.050708.144203 Schulman A., 2020, The impact of GM crops on agriculture, In: Andersen V. (ed.), Genetically modified and irradiated food, Academic Press, California, America, pp.195-213. https://doi.org/10.1016/B978-0-12-817240-7.00012-7 PMid:33402851 PMCid:PMC7778441 Sharma P., Singh S., Iqbal H., Parra-Saldívar R., Varjani S., and Tong Y., 2022, Genetic modifications associated with sustainability aspects for sustainable developments, Bioengineered, 13(4): 9509-9521. https://doi.org/10.1080/21655979.2022.2061146 PMid:35389819 PMCid:PMC9161841 Wu J., Lawit S., Weers B., Sun J., Mongar N., Hemert J., Melo R., Meng X., Rupe M., Clapp J., Collet K., Trecker L., Roesler K., Peddicord L., Thomas J., Hunt J., Zhou W., Hou Z., Wimmer M., Jantes J., Mo H., Liu L., Wang Y., Walker C., Danilevskaya O., Lafitte R., Schussler J., Shen B., and Habben J., 2019, Overexpression of zmm28 increases maize grain yield in the field, Proceedings of the National Academy of Sciences of the United States of America, 116(47): 23850-23858. https://doi.org/10.1073/pnas.1902593116 PMid:31685622 PMCid:PMC6876154 Yang X., Zhao S., Liu B., Gao Y., Hu C., Li W., Yang Y., Li G., Wang L., Yang X., Yuan H., Liu J., Liu D., Shen X., Wyckhuys K., Lu Y., and Wu K., 2022, Bt maize can provide non‐chemical pest control and enhance food safety in China, Plant Biotechnology Journal, 21: 391-404. https://doi.org/10.1111/pbi.13960 PMid:36345605 PMCid:PMC9884019 Yassitepe J., Silva V., Hernandes-Lopes J., Dante R., Gerhardt I., Fernandes F., Silva P., Vieira L., Bonatti V., and Arruda P., 2021, Maize transformation: from plant material to the release of genetically modified and edited varieties, Frontiers in Plant Science, 12: 766702. https://doi.org/10.3389/fpls.2021.766702 PMid:34721493 PMCid:PMC8553389 Zafar S., Iqbal A., Azhar M., Atif R., Rana I., Rehman H., Nawaz M., and Chung G., 2019, GM maize for abiotic stresses: potentials and opportunities, In: Wani S. (ed.), Recent approaches in omics for plant resilience to climate change, Springer, Cham., Switzerland, pp.229-249. https://doi.org/10.1007/978-3-030-21687-0_10

RkJQdWJsaXNoZXIy MjQ4ODY0NQ==