CGG_2025v16n5

Cotton Genomics and Genetics 2025, Vol.16, No.5, 241-248 247 Conflict of Interest Disclosure The authors affirm that this research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest. References Abidi N., Cabrales L., and Hequet E., 2010, Fourier transform infrared spectroscopic approach to the study of the secondary cell wall development in cotton fiber, Cellulose, 17(2): 309-320. https://doi.org/10.1007/S10570-009-9366-1 Adnane M., De Almeida A., and Chapwanya A., 2024, Unveiling the power of proteomics in advancing tropical animal health and production, Tropical Animal Health and Production, 56(5): 182. https://doi.org/10.1007/s11250-024-04037-4 Albert E., and Sauvage C., 2022, Identification and validation of candidate genes from genome-wide association studies, In: Genome-wide association studies, New York, NY: Springer US, pp.249-272. https://doi.org/10.1007/978-1-0716-2237-7_15 Alinezhad S., Väänänen R., Mattsson J., Li Y., Tallgrén T., Ochoa N., Bjartell A., Åkerfelt M., Taimen P., Boström P., Pettersson K., and Nees M., 2016, Validation of novel biomarkers for prostate cancer progression by the combination of bioinformatics, clinical and functional studies, PLoS ONE, 11(5): e0155901. https://doi.org/10.1371/journal.pone.0155901 Ankney J., Muneer A., and Chen X., 2018, Relative and absolute quantitation in mass spectrometry-based proteomics, Annual Review of Analytical Chemistry, 11(1): 49-77. https://doi.org/10.1146/annurev-anchem-061516-045357 Cornean A., Gierten J., Welz B., Mateo J., Thumberger T., and Wittbrodt J., 2021, Precise in vivo functional analysis of DNA variants with base editing using ACEofBASEs target prediction, eLife, 11: e453883. https://doi.org/10.1101/2021.07.26.453883 Das A., Paudel B., and Rohila J., 2015, Potentials of proteomics in crop breeding, In: Advances in plant breeding strategies: breeding, biotechnology and molecular tools, Cham: Springer International Publishing, pp.513-537. https://doi.org/10.1007/978-3-319-22521-0_18 Distler U., Kuharev J., Navarro P., and Tenzer S., 2016, Label-free quantification in ion mobility-enhanced data-independent acquisition proteomics, Nature Protocols, 11(4): 795-812. https://doi.org/10.1038/nprot.2016.042 El-Hack M., Abdelnour S., Swelum A., and Arif M., 2018, The application of gene marker-assisted selection and proteomics for the best meat quality criteria and body measurements in Qinchuan cattle breed, Molecular Biology Reports, 45(5): 1445-1456. https://doi.org/10.1007/s11033-018-4211-y Fang S., Shang X., He Q., Li W., Song X., Zhang B., and Guo W., 2024, A cell wall-localized β-1,3-glucanase promotes fiber cell elongation and secondary cell wall deposition, Plant Physiology, 194(1): 106-123. https://doi.org/10.1093/plphys/kiad407 Gou J., Wang L., Chen S., Hu W., and Chen X., 2007, Gene expression and metabolite profiles of cotton fiber during cell elongation and secondary cell wall synthesis, Cell Research, 17(5): 422-434. https://doi.org/10.1038/sj.cr.7310150 Gouletsou P., Tsangaris G., Katsarou E., Bourganou M., Barbagianni M., Venianaki A., Bouroutzika E., Anagnostopoulos A., Fthenakis G., and Katsafadou A., 2022, Proteomics evaluation of semen of clinically healthy Beagle-breed dogs, Veterinary Sciences, 9(12): 697. https://doi.org/10.3390/vetsci9120697 Grover C., Jareczek J., Swaminathan S., Lee Y., Howell A., Rani H., Arick M., Leach A., Miller E., Yang P., Hu G., Xiong X., Mallery E., Peterson D., Xie J., Haigler C., Zabotina O., Szymanski D., and Wendel J., 2025, A high-resolution model of gene expression during Gossypium hirsutum (cotton) fiber development, BMC Genomics, 26(1): 221. https://doi.org/10.1186/s12864-025-11360-z Hemmerlin A., 2013, Post-translational events and modifications regulating plant enzymes involved in isoprenoid precursor biosynthesis, Plant Science, 203: 41-54. https://doi.org/10.1016/j.plantsci.2012.12.008 Huang J., Chen F., Guo Y., Gan X., Yang M., Zeng W., Persson S., Li J., and Xu W., 2021, GhMYB7 promotes secondary wall cellulose deposition in cotton fibers by regulating GhCesAgene expression through three distinct cis-elements, New Phytologist, 232(4): 1718-1737. https://doi.org/10.1111/nph.17612 Iqbal A., Aslam S., Ahmed M., Khan F., Ali Q., and Han S., 2023, Role of actin dynamics and GhACTIN1 gene in cotton fiber development: a prototypical cell for study, Genes, 14(8): 1642. https://doi.org/10.3390/genes14081642 Jan M., Liu Z., Guo C., and Sun X., 2022, Molecular regulation of cotton fiber development: a review, International Journal of Molecular Sciences, 23(9): 5004. https://doi.org/10.3390/ijms23095004

RkJQdWJsaXNoZXIy MjQ4ODYzNA==