CGG_2025v16n5

Cotton Genomics and Genetics 2025, Vol.16, No.5, 222-231 http://cropscipublisher.com/index.php/cgg 231 Yoshida G., and Yáñez J., 2020, Multi-trait GWAS using imputed high-density genotypes from whole-genome sequencing identifies genes associated with body traits in Nile tilapia, BMC Genomics, 22(1): 57. https://doi.org/10.1186/s12864-020-07341-z Zhang Y., Jia Z., and Dunwell J., 2019, The applications of new multi-locus GWAS methodologies in the genetic dissection of complex traits, Frontiers in Plant Science, 10: 100. https://doi.org/10.3389/fpls.2019.00100 Zhao N., Wang W., Grover C., Jiang K., Pan Z., Guo B., Zhu J., Su Y., Wang M., Nie H., Xiao L., Guo A., Yang J., Cheng C., Ning X., Li B., Xu H., Iyaah D., Alifu A., Li P., Geng J., Wendel J., Kong J., and Hua J., 2022, Genomic and GWAS analyses demonstrate phylogenomic relationships of Gossypium barbadense in China and selection for fibre length, lint percentage and Fusarium wilt resistance, Plant Biotechnology Journal, 20(4): 691-710. https://doi.org/10.1111/pbi.13747 Zhu G., Hou S., Song X., Wang X., Wang W., Chen Q., and Guo W., 2021, Genome-wide association analysis reveals quantitative trait loci and candidate genes involved in yield components under multiple field environments in cotton (Gossypium hirsutum), BMC Plant Biology, 21(1): 250. https://doi.org/10.1186/s12870-021-03009-2 Zhu S.J., and Luo M.T., 2024, Advancements in pest management techniques for cotton crops, Bioscience Methods, 15(4): 196-206. https://doi.org/10.5376/bm.2024.15.0020

RkJQdWJsaXNoZXIy MjQ4ODYzNA==