Cotton Genomics and Genetics 2025, Vol.16, No.5, 222-231 http://cropscipublisher.com/index.php/cgg 230 Porter H., and O’Reilly P., 2017, Multivariate simulation framework reveals performance of multi-trait GWAS methods, Scientific Reports, 7(1): 38837. https://doi.org/10.1038/srep38837 Qi G., Si Z., Xuan L., Han Z., Hu Y., Fang L., Dai F., and Zhang T., 2024, Unravelling the genetic basis and regulation networks related to fibre quality improvement using chromosome segment substitution lines in cotton, Plant Biotechnology Journal, 22(11): 3135-3150. https://doi.org/10.1111/pbi.14436 Sahito J., Zhang H., Gishkori Z., Ma C., Wang Z., Ding D., Zhang X., and Tang J., 2024, Advancements and prospects of genome-wide association studies (GWAS) in maize, International Journal of Molecular Sciences, 25(3): 1918. https://doi.org/10.3390/ijms25031918 Said J., Lin Z., Zhang X., Song M., and Zhang J., 2013, A comprehensive meta QTL analysis for fiber quality, yield, yield-related and morphological traits, drought tolerance, and disease resistance in tetraploid cotton, BMC Genomics, 14(1): 776. https://doi.org/10.1186/1471-2164-14-776 Sanches P., De Melo N., Porcari A., and De Carvalho L., 2024, Integrating molecular perspectives: strategies for comprehensive multi-omics integrative data analysis and machine learning applications in transcriptomics, proteomics, and metabolomics, Biology, 13(11): 848. https://doi.org/10.3390/biology13110848 Su J., Ma Q., Li M., Hao F., and Wang C., 2018, Multi-locus genome-wide association studies of fiber-quality related traits in Chinese early-maturity upland cotton, Frontiers in Plant Science, 9: 1169. https://doi.org/10.3389/fpls.2018.01169 Su J., Wang C., Ma Q., Zhang A., Shi C., Liu J., Zhang X., Yang D., and Ma X., 2020, An RTM-GWAS procedure reveals the QTL alleles and candidate genes for three yield-related traits in upland cotton, BMC Plant Biology, 20(1): 416. https://doi.org/10.1186/s12870-020-02613-y Sun Z., Wang X., Liu Z., Gu Q., Zhang Y., Li Z., Ke H., Yang J., Wu J., Wu L., Zhang G., Zhang C., and Ma Z., 2017, Genome-wide association study discovered genetic variation and candidate genes of fibre quality traits in Gossypium hirsutumL., Plant Biotechnology Journal, 15(8): 982-996. https://doi.org/10.1111/pbi.12693 Suzuki Y., Ménager H., Brancotte B., Vernet R., Nerin C., Boetto C., Auvergne A., Linhard C., Torchet R., Lechat P., Troubat L., Cho M., Bouzigon E., Aschard H., and Julienne H., 2024, Trait selection strategy in multi-trait GWAS: boosting SNP discoverability, Human Genetics and Genomics Advances, 5(3): 100319. https://doi.org/10.1016/j.xhgg.2024.100319 Tamba C., Ni Y., and Zhang Y., 2017, Iterative sure independence screening EM-Bayesian LASSO algorithm for multi-locus genome-wide association studies, PLoS Computational Biology, 13(1): e1005357. https://doi.org/10.1371/journal.pcbi.1005357 Thyssen G., Jenkins J., McCarty J., Zeng L., Campbell B., Delhom C., Islam M., Li P., Jones D., Condon B., and Fang D., 2018, Whole genome sequencing of a MAGIC population identified genomic loci and candidate genes for major fiber quality traits in upland cotton (Gossypium hirsutumL.), Theoretical and Applied Genetics, 132(4): 989-999. https://doi.org/10.1007/s00122-018-3254-8 Troubat L., Fettahoglu D., Henches L., Aschard H., and Julienne H., 2024, Multi-trait GWAS for diverse ancestries: mapping the knowledge gap, BMC Genomics, 25(1): 375. https://doi.org/10.1101/2023.06.23.546248 Turley P., Walters R., Maghzian O., Okbay A., Lee J., Fontana M., Nguyen-Viet T., Wedow R., Zacher M., Furlotte N., Agee M., Alipanahi B., Auton A., Bell R., Bryc K., Elson S., Fontanillas P., Hinds D., Hromatka B., Huber K., Kleinman A., Litterman N., McIntyre M., Mountain J., Northover C., Sathirapongsasuti J., Sazonova O., Shelton J., Shringarpure S., Tian C., Tung J., Vacic V., Wilson C., Pitts S., Magnusson P., Oskarsson S., Johannesson M., Visscher P., Laibson D., Cesarini D., Neale B., and Benjamin D., 2018, Multi-trait analysis of genome-wide association summary statistics using MTAG, Nature Genetics, 50(2): 229-237. https://doi.org/10.1038/s41588-017-0009-4 Wang L., Yang Y., Qin J., Ma Q., Qiao K., Fan S., and Qu Y., 2025, Integrative GWAS and transcriptomics reveal GhAMT2 as a key regulator of cotton resistance to Verticillium wilt, Frontiers in Plant Science, 16: 1563466. https://doi.org/10.3389/fpls.2025.1563466 Wang M., Qi Z., Thyssen G., Naoumkina M., Jenkins J., McCarty J., Xiao Y., Li J., Zhang X., and Fang D., 2022, Genomic interrogation of a MAGIC population highlights genetic factors controlling fiber quality traits in cotton, Communications Biology, 5(1): 60. https://doi.org/10.1038/s42003-022-03022-7 Wang P., He S., Sun G., Pan Z., Sun J., Geng X., Peng Z., Gong W., Wang L., Pang B., Jia Y., and Du X., 2021, Favorable pleiotropic loci for fiber yield and quality in upland cotton (Gossypium hirsutum), Scientific Reports, 11(1): 15935. https://doi.org/10.1038/s41598-021-95629-9 Wen Y., Zhang H., Ni Y., Huang B., Zhang J., Feng J., Wang S., Dunwell J., Zhang Y., and Wu R., 2018, Methodological implementation of mixed linear models in multi-locus genome-wide association studies, Briefings in Bioinformatics, 19(4): 700-712. https://doi.org/10.1093/bib/bbw145 Yang Y., Saand M., Huang L., Abdelaal W., Zhang J., Wu Y., Li J., Sirohi M., and Wang F., 2021, Applications of multi-omics technologies for crop improvement, Frontiers in Plant Science, 12: 563953. https://doi.org/10.3389/fpls.2021.563953
RkJQdWJsaXNoZXIy MjQ4ODYzNA==