Cotton Genomics and Genetics 2025, Vol.16, No.5, 210-221 http://cropscipublisher.com/index.php/cgg 219 Chen Z., Sreedasyam A., Ando A., Song Q., De Santiago L., Hulse-Kemp A., Ding M., Ye W., Kirkbride R., Jenkins J., Plott C., Lovell J., Lin Y., Vaughn R., Liu B., Simpson S., Scheffler B., Wen L., Saski C., Grover C., Hu G., Conover J., Carlson J., Shu S., Boston L., Williams M., Peterson D., McGee K., Jones D., Wendel J., Stelly D., Grimwood J., and Schmutz J., 2020, Genomic diversifications of five Gossypium allopolyploid species and their impact on cotton improvement, Nature Genetics, 52(5): 525-533. https://doi.org/10.1038/s41588-020-0614-5 Gurmessa D., Bantte K., and Negisho K., 2024, Genetic diversity in Pima (Gossypium barbadense L.) and advanced interspecific hybrids (Gossypium hirsutum × Gossypium barbadense) of cotton germplasm in Ethiopia, Plant Gene, 39: 100458. https://doi.org/10.1016/j.plgene.2024.100458 Han J., López-Arredondo D., Yu G., Wang Y., Wang B., Wall S., Zhang X., Fang H., Barragán-Rosillo A., Pan X., Jiang Y., Chen J., Zhang H., Zhou B., Herrera-Estrella L., Zhang B., and Wang K., 2022, Genome-wide chromatin accessibility analysis unveils open chromatin convergent evolution during polyploidization in cotton, Proceedings of the National Academy of Sciences, 119(44): e2209743119. https://doi.org/10.1073/pnas.2209743119 Han J., Yu G., Zhang X., Dai Y., Zhang H., Zhang B., and Wang K., 2023, Histone maps in Gossypium darwinii reveal epigenetic regulation drives subgenome divergence and cotton domestication, International Journal of Molecular Sciences, 24(13): 10607. https://doi.org/10.3390/ijms241310607 Hinze L., Hulse-Kemp A., Wilson I., Zhu Q., Llewellyn D., Taylor J., Spriggs A., Fang D., Ulloa M., Burke J., Giband M., Lacape J., Van Deynze A., Udall J., Scheffler J., Hague S., Wendel J., Pepper A., Frelichowski J., Lawley C., Jones D., Percy R., and Stelly D., 2017, Diversity analysis of cotton (Gossypium hirsutum L.) germplasm using the CottonSNP63K Array, BMC Plant Biology, 17(1): 37. https://doi.org/10.1186/s12870-017-0981-y Hu G., Grover C., Vera D., Lung P., Girimurugan S., Miller E., Conover J., Ou S., Xiong X., Zhu D., Li D., Gallagher J., Udall J., Sui X., Zhang J., Bass H., and Wendel J., 2024, Evolutionary dynamics of chromatin structure and duplicate gene expression in diploid and allopolyploid cotton, Molecular Biology and Evolution, 41(5): msae095. https://doi.org/10.1093/molbev/msae095 Hu Y., Chen J., Fang L., Zhang Z., Ma W., Niu Y., Ju L., Deng J., Zhao T., Lian J., Baruch K., Fang D., Liu X., Ruan Y., Rahman M., Han J., Wang K., Wang Q., Wu H., Mei G., Zang Y., Han Z., Xu C., Shen W., Yang D., Si Z., Dai F., Zou L., Huang F., Bai Y., Zhang Y., Brodt A., Ben-Hamo H., Zhu X., Zhou B., Guan X., Zhu S., Chen X., and Zhang T., 2019, Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton, Nature Genetics, 51(4): 739-748. https://doi.org/10.1038/s41588-019-0371-5 Huang G., Huang J., Chen X., and Zhu Y., 2021, Recent advances and future perspectives in cotton research, Annual Review of Plant Biology, 72(1): 437-462. https://doi.org/10.1146/annurev-arplant-080720-113241 Huang X., Wang Y., Zhang S., Pei L., You J., Long Y., Li J., Zhang X., Zhu L., and Wang M., 2024, Epigenomic and 3D genomic mapping reveals developmental dynamics and subgenomic asymmetry of transcriptional regulatory architecture in allotetraploid cotton, Nature Communications, 15(1): 10721. https://doi.org/10.1038/s41467-024-55309-4 Jin S., Han Z., Hu Y., Si Z., Dai F., He L., Cheng Y., Li Y., Zhao T., Fang L., and Zhang T., 2023, Structural variation (SV)-based pan-genome and GWAS reveal the impacts of SVs on the speciation and diversification of allotetraploid cottons, Molecular Plant, 16(4): 678-693. https://doi.org/10.1016/j.molp.2023.02.004 Joshi B., Singh S., Tiwari G., Kumar H., Boopathi N., Jaiswal S., Adhikari D., Kumar D., Sawant S., Iquebal M., and Jena S., 2023, Genome-wide association study of fiber yield-related traits uncovers novel genomic regions and candidate genes in Indian upland cotton (Gossypium hirsutum L.), Frontiers in Plant Science, 14: 1252746. https://doi.org/10.3389/fpls.2023.1252746 Kumar R., Das J., Puttaswamy R., Kumar M., Balasubramani G., and Prasad Y., 2024, Targeted genome editing for cotton improvement: prospects and challenges, The Nucleus, 67(1): 181-203. https://doi.org/10.1007/s13237-024-00479-1 Kushanov F., Turaev O., Ernazarova D., Gapparov B., Oripova B., Kudratova M., Rafieva F., Khalikov K., Erjigitov D., Khidirov M., Kholova M., Khusenov N., Amanboyeva R., Saha S., Yu J., and Abdurakhmonov I., 2021, Genetic diversity, QTL mapping, and marker-assisted selection technology in cotton (Gossypium spp.), Frontiers in Plant Science, 12: 779386. https://doi.org/10.3389/fpls.2021.779386 Li J., Liu Z., You C., Qi Z., You J., Grover C., Long Y., Huang X., Lu S., Wang Y., Zhang S., Wang Y., Bai R., Zhang M., Jin S., Nie X., Wendel J., Zhang X., and Wang M., 2024, Convergence and divergence of diploid and tetraploid cotton genomes, Nature Genetics, 56(11): 2562-2573. https://doi.org/10.1038/s41588-024-01964-8 Li J., Yuan D., Wang P., Wang Q., Sun M., Liu Z., Si H., Xu Z., Zhang B., Pei L., Tu L., Zhu L., Chen L., Lindsey K., Zhang X., Jin S., and Wang M., 2021, Cotton pan-genome retrieves the lost sequences and genes during domestication and selection, Genome Biology, 22(1): 119. https://doi.org/10.1186/s13059-021-02351-w Li X., Jin X., Wang H., Zhang X., and Lin Z., 2016, Structure, evolution, and comparative genomics of tetraploid cotton based on a high-density genetic linkage map, DNA Research, 23(3): 283-293. https://doi.org/10.1093/dnares/dsw016
RkJQdWJsaXNoZXIy MjQ4ODYzNA==