Cotton Genomics and Genetics 2025, Vol.16, No.3, 137-147 http://cropscipublisher.com/index.php/cgg 146 Pei Y., Zhu Y., Jia Y., Ge X., Li X., Li F., and Hou Y., 2020, Molecular evidence for the involvement of cotton GhGLP2, in enhanced resistance to Verticillium and Fusarium wilts and oxidative stress, Scientific Reports, 10(1): 12510. https://doi.org/10.1038/s41598-020-68943-x Shaban M., Miao Y., Ullah A., Khan A., Manghwar H., Khan A., Ahmed M., Tabassum M., and Zhu L., 2018, Physiological and molecular mechanism of defense in cotton against Verticillium dahliae, Plant Physiology and Biochemistry, 125: 193-204. https://doi.org/10.1016/j.plaphy.2018.02.011 Sun Q., Jiang H., Zhu X., Wang W., He X., Shi Y., Yuan Y., Du X., and Cai Y., 2013, Analysis of sea-island cotton and upland cotton in response to Verticillium dahliae infection by RNA sequencing, BMC Genomics, 14(1): 852. https://doi.org/10.1186/1471-2164-14-852 Wagner T., Gu A., Duke S., Bell A., Magill C., and Liu J., 2020, Genetic diversity and pathogenicity of Verticillium dahliae isolates and their co-occurrence with Fusarium oxysporum f. sp. vasinfectum causing cotton wilt in Xinjiang, China, Plant Disease, 105(4): 978-985. https://doi.org/10.1094/PDIS-09-20-2038-RE Wang J.M., and Zhang J., 2024, Assessing the impact of various cotton diseases on fiber quality and production, Field Crop, 7(4): 212-221. https://doi.org/10.5376/fc.2024.07.0021 Wang P., Zhou L., Jamieson P., Zhang L., Zhao Z., Babilonia K., Shao W., Wu L., Mustafa R., Amin I., Diomaiuti A., Pontiggia D., Ferrari S., Hou Y., He P., and Shan L., 2020, The cotton wall-associated kinase GhWAK7A mediates responses to fungal wilt pathogens by complexing with the chitin sensory receptors, Plant Cell, 32(12): 3978-4001. https://doi.org/10.1105/tpc.19.00950 Xing B., Li P., Li Y., Cui B., Sun Z., Chen Y., Zhang S., Liu Q., Zhang A., Hao L., Du X., Liu X., Wu B., Peng R., and Hu S., 2024, Integrated transcriptomic and metabolomic analysis of G. hirsutum and G. barbadense responses to Verticillium wilt infection, International Journal of Molecular Sciences, 26(1): 28. https://doi.org/10.3390/ijms26010028 Xu J., Zhou T., Wang P., Wang Y., Billah Y., Pu Y., Chen Q., and Sun G., 2024a, The GhEB1C gene mediates resistance of cotton to Verticillium wilt, Planta, 260(5): 110. https://doi.org/10.1007/s00425-024-04524-w Xu J., Zhou T., Wang Y., Billah Y., Pu Y., Chen Q., Zheng K., and Sun G., 2024b, Functional analysis of the GhIQD1 gene in cotton resistance to Verticillium wilt, Plants, 13(7): 1005. https://doi.org/10.3390/plants13071005 Xu L., Zhang W., He X., Liu M., Zhang K., Shaban M., Sun L., Zhu J., Luo Y., Yuan D., Zhang X., and Zhu L., 2014, Functional characterization of cotton genes responsive to Verticillium dahliae through bioinformatics and reverse genetics strategies, Journal of Experimental Botany, 65(22): 6679-6692. https://doi.org/10.1093/jxb/eru393 Yi F., Song A., Cheng K., Liu J., Wang C., Shao L, Wu S., Wang P., Zhu J., Liang Z., Chang Y., Chu Z., Cai C., Zhang X., Wang P., Chen A., Xu J., Burritt D., Herrera-Estrella L., Tran L., Li W., and Cai Y., 2023, Strigolactones positively regulate Verticillium wilt resistance in cotton via crosstalk with other hormones, Plant Physiology, 192(2): 945-966. https://doi.org/10.1093/plphys/kiad053 Zhang Y., Wang, X., Wei, R., Billah J., and Ma Z., 2016, Island cotton enhanced disease susceptibility 1 gene encoding a lipase-like protein plays a crucial role in response to Verticillium dahliae by regulating the SA level and H2O2 accumulation, Frontiers in Plant Science, 7: 1830. https://doi.org/10.3389/fpls.2016.01830 Zhang G., Zhao Z., Ma P., Qu Y., Sun G., and Chen Q., 2021a, Integrative transcriptomic and gene co-expression network analysis of host responses upon Verticillium dahliae infection in Gossypium hirsutum, Scientific Reports, 11(1): 20586. https://doi.org/10.1038/s41598-021-99063-9 Zhang M., Ma Y., Wang Y., Gao H., Zhao S., Yu Y., Zhang X., and Xi H., 2024, MAPK and phenylpropanoid metabolism pathways involved in regulating the resistance of upland cotton plants to Verticillium dahliae, Frontiers in Plant Science, 15: 1451985. https://doi.org/10.3389/fpls.2024.1451985 Zhang X., Cheng W., Feng Z., Zhu Q., Sun Y., Li Y., and Sun J., 2020, Transcriptomic analysis of gene expression of Verticillium dahliae upon treatment of the cotton root exudates, BMC Genomics, 21(1): 155. https://doi.org/10.1186/s12864-020-6448-9 Zhang Y., Chen B., Sun Z., Liu Z., Cui Y., Ke H., Wang Z., Wu L., Zhang G., Wang G., Li Z., Billah J., Wu J., Shi R., Liu S., Wang X., and Ma Z., 2021b, A large‐scale genomic association analysis identifies a fragment in Dt11 chromosome conferring cotton Verticillium wilt resistance, Plant Biotechnology Journal, 19(10): 2126-2138. https://doi.org/10.1111/pbi.13650 Zhang Y., Wang X., Ding Z., Ma Q., Zhang G., Zhang S., Li Z., Wu L., Zhang G., and Ma Z., 2013, Transcriptome profiling of Gossypium barbadense inoculated with Verticillium dahliae provides a resource for cotton improvement, BMC Genomics, 14(1): 637. https://doi.org/10.1186/1471-2164-14-637 Zhang Y., Zhao L., Li D., Li Z., Feng H., Feng Z., Wei F., Zhou J., Ma Z., Yang J., and Zhu H., 2025, A comprehensive review on elucidating the host disease resistance mechanism from the perspective of the interaction between cotton and Verticillium dahliae, Journal of Cotton Research, 8(1): 5. https://doi.org/10.1186/s42397-024-00207-9
RkJQdWJsaXNoZXIy MjQ4ODYzNA==