Cotton Genomics and Genetics 2025, Vol.16, No.3, 137-147 http://cropscipublisher.com/index.php/cgg 145 Billah M., Li F., and Billah Z., 2021, Regulatory network of cotton genes in response to salt, drought and wilt diseases (Verticillium and Fusarium): progress and perspective, Frontiers in Plant Science, 12: 759245. https://doi.org/10.3389/fpls.2021.759245 Chang B., Zhao L., Feng Z., Wei F., Zhang Y., Zhang Y., Huo P., Cheng Y., Zhou J., and Feng H., 2023, Galactosyltransferase GhRFS6 interacting with GhOPR9 involved in defense against Verticillium wilt in cotton, Plant Science, 328: 111582. https://doi.org/10.1016/j.plantsci.2022.111582 Cheng G., Li X., Fernando W., Bibi S., Liang C., Bi Y., Liu X., and Li Y., 2025, Fatty acid ABCG transporter GhSTR1 mediates resistance to Verticillium dahliae and Fusarium oxysporum in cotton, Plants, 14(3): 465. https://doi.org/10.3390/plants14030465 Gao W., Long L., Zhu L., Xu L., Gao W., Sun L., Liu L., and Zhang X., 2013, Proteomic and virus-induced gene silencing (VIGS) analyses reveal that gossypol, brassinosteroids, and jasmonic acid contribute to the resistance of cotton to Verticillium dahliae*, Molecular & Cellular Proteomics, 12(12): 3690-3703. https://doi.org/10.1074/mcp.M113.031013 Gao X., Wheeler T., Li Z., Kenerley C., He P., and Shan L., 2011, Silencing GhNDR1 and GhMKK2 compromises cotton resistance to Verticillium wilt, The Plant Journal, 66(2): 293-305. https://doi.org/10.1111/j.1365-313X.2011.04491.x Li P., Rashid M., Chen T., Lu Q., Ge Q., Gong W., Liu A., Gong J., Shang H., Deng X., Li J., Li S., Xiao X., Liu R., Zhang Q., Duan L., Zou X., Zhang Z., Jiang X., Zhang Y., Peng R., Shi Y., and Yuan Y., 2019, Transcriptomic and biochemical analysis of upland cotton (Gossypium hirsutum) and a chromosome segment substitution line from G. hirsutum × G. barbadense in response to Verticillium dahliae infection, BMC Plant Biology, 19(1): 19. https://doi.org/10.1186/s12870-018-1619-4 Li T., Ma X., Li N., Zhou L., Liu Z., Han H., Gui Y., Bao Y., Chen J., and Dai X., 2017a, Genome‐wide association study discovered candidate genes of Verticillium wilt resistance in upland cotton (Gossypium hirsutum L.), Plant Biotechnology Journal, 15(12): 1520-1532. https://doi.org/10.1111/pbi.12734 Li T., Zhang D., Zhou L., Kong Z., Hussaini A., Wang D., Li J., Short D., Dhar N., Klosterman S., Wang B., Yin C., Subbarao K., Chen J., and Dai X., 2018, Genome-wide identification and functional analyses of the CRK gene family in cotton reveals GbCRK18 confers Verticillium wilt resistance in Gossypium barbadense, Frontiers in Plant Science, 9: 1266. https://doi.org/10.3389/fpls.2018.01266 Li T., Zhang Q., Jiang X., Li R., and Dhar N., 2021a, Cotton CC-NBS-LRR Gene GbCNL130 confers resistance to Verticillium wilt across different species, Frontiers in Plant Science, 12: 695691. https://doi.org/10.3389/fpls.2021.695691 Li X., Zhang Y., Ding C., Xu W., and Wang X., 2017b, Temporal patterns of cotton Fusarium and Verticillium wilt in Jiangsu coastal areas of China, Scientific Reports, 7(1): 12581. https://doi.org/10.1038/s41598-017-12985-1 Li Y., Li Y., Yang Q., Song S., Zhang Y., Zhang X., Sun J., Liu F., and Li Y., 2024, Dual transcriptome analysis reveals the changes in gene expression in both cotton and Verticillium dahliae during the infection process, Journal of Fungi, 10(11): 773. https://doi.org/10.3390/jof10110773 Liu F., Ma D., Li R., Li W., Chen D., Yao Z., Song W., and Li W., 2004, The resistance identification to Verticillium wilt and to Fusarium wilt for transgenic GAFP colored cotton lines of Xinjiang, Xinjiang Agricultural Sciences, 41(4): 244-247. Liu H., Nuerziya, Bi H., Guo T., Wu G., and Yao J., 2012, Identification and evaluation of the Verticillium wilt resistance of cotton in Xinjiang, Xinjiang Agricultural Sciences, 49(5): 873-878. Liu Z., Zhang L., Li G., Feng J., and Jia W., 2006, Identification on resistance of long-staple cotton varieties to Fusarium and Verticillium wilt in Xinjiang, Xinjiang Agricultural Sciences, 43(3): 189-191. Liu F., Cai S., Dai L., Ai N., Feng G., Wang N., Zhang W., Liu K., and Zhou B., 2024, SR45a plays a key role in enhancing cotton resistance to Verticillium dahliae by alternative splicing of immunity genes, The Plant Journal, 119(1): 137-152. https://doi.org/10.1111/tpj.16750 Liu F., Cai S., Wu P., Dai L., Li X., Ai N., Feng G., Wang N., and Zhou B., 2023, General Regulatory Factor7 regulates plant innate immune signaling to enhance Verticillium wilt resistance in cotton, Journal of Experimental Botany, 75(1): 468-482. https://doi.org/10.1093/jxb/erad385 Liu N., Zhang X., Sun Y., Wang P., Li X., Pei Y., Li F., and Hou Y., 2017, Molecular evidence for the involvement of a polygalacturonase-inhibiting protein, GhPGIP1, in enhanced resistance to Verticillium and Fusarium wilts in cotton, Scientific Reports, 7(1): 39840. https://doi.org/10.1038/srep39840 Man M., Zhu Y., Liu L., Luo L., Han X., Qiu L., Li F., Ren M., and Xing Y., 2022, Defense mechanisms of cotton Fusarium and Verticillium wilt and comparison of pathogenic response in cotton and humans, International Journal of Molecular Sciences, 23(20): 12217. https://doi.org/10.3390/ijms232012217 Mo S., Zhang Y., Wang X., Yang J., Sun Z., Zhang D., Chen B., Wang G., Ke H., Liu Z., Meng C., Li Z., Wu L., Zhang G., Duan H., and Ma Z., 2021, Cotton GhSSI2 isoforms from the stearoyl acyl carrier protein fatty acid desaturase family regulate Verticillium wilt resistance, Molecular Plant Pathology, 22(9): 1041-1056. https://doi.org/10.1111/mpp.13093
RkJQdWJsaXNoZXIy MjQ4ODYzNA==