CGG2025v16n3

Cotton Genomics and Genetics 2025, Vol.16, No.3, 126-136 http://cropscipublisher.com/index.php/cgg 135 Rabey H., Al-Malki A., and Abulnaja K., 2016, Proteome analysis of date palm (Phoenix dactylifera L.) under severe drought and salt stress, International Journal of Genomics, 2016(1): 7840759. https://doi.org/10.1155/2016/7840759 Rabey H., Al-Malki A., Abulnaja K., and Rohde W., 2015, Proteome analysis for understanding abiotic stress (salinity and drought) tolerance in date palm (Phoenix dactylifera L.), International Journal of Genomics, 2015(1): 407165. https://doi.org/10.1155/2015/407165 Ren W., Shi Z., Zhou M., Zhao B., Li H., Wang J., Liu Y., and Zhao J., 2022, iTRAQ-based quantitative proteomic analysis provides insight into the drought-stress response in maize seedlings, Scientific Reports, 12(1): 9520. https://doi.org/10.1038/s41598-022-13110-7 Sadau S., Ahmad A., Tajo S., Ibrahim S., Kazeem B., Wei H., and Yu S., 2021, Overexpression of GhMPK3 from cotton enhances cold, drought, and salt stress in Arabidopsis, Agronomy, 11(6): 1049. https://doi.org/10.3390/AGRONOMY11061049 Shiraku M., Magwanga R., Zhang Y., Hou Y., Kirungu J., Mehari T., Xu Y., Wang Y., Wang K., Cai X., Zhou Z., and Liu F., 2022, Late embryogenesis abundant gene LEA3 (Gh_A08G0694) enhances drought and salt stress tolerance in cotton, International Journal of Biological Macromolecules, 207: 700-714. https://doi.org/10.1016/j.ijbiomac.2022.03.110 Subramani M., Urrea C., Tamatamu S., Sripathi V., Williams K., Chintapenta L., Todd A., and Ozbay G., 2024, Comprehensive proteomic analysis of common bean (Phaseolus vulgaris L.) seeds reveal shared and unique proteins involved in terminal drought stress response in tolerant and sensitive genotypes, Biomolecules, 14(1): 109. https://doi.org/10.3390/biom14010109 Sun K., Mehari T., Fang H., Han J., Huo X., Zhang J., Chen Y., Wang D., Zhuang Z., Ditta A., Khan M., Zhang J., Wang K., and Wang B., 2023, Transcriptome, proteome and functional characterization reveals salt stress tolerance mechanisms in upland cotton (Gossypium hirsutum L.), Frontiers in Plant Science, 14: 1092616. https://doi.org/10.3389/fpls.2023.1092616 Wang C.L., Ni Niang N.N.Z., Zhang C., Li J.J., Zhu Q., Lee D.S., and Chen L.J., 2024, Protein-protein interaction networks in rice under drought stress: insights from proteomics and bioinformatics analysis, Computational Molecular Biology, 14(5): 191-201. https://doi.org/10.5376/cmb.2024.14.0022 Wang X., Cai X., Xu C., Wang Q., and Dai S., 2016, Drought-responsive mechanisms in plant leaves revealed by proteomics, International Journal of Molecular Sciences, 17(10): 1706. https://doi.org/10.3390/ijms17101706 Wang Y., Yu Y., Wan H., Tang J., and Ni Z., 2022, The sea-island cotton GbTCP4 transcription factor positively regulates drought and salt stress responses, Plant Science, 322: 111329. https://doi.org/10.1016/j.plantsci.2022.111329 Xiao S., Liu L., Zhang Y., Sun H., Zhang K., Bai Z., Dong H., Liu Y., and Li C., 2020, Tandem mass tag-based (TMT) quantitative proteomics analysis reveals the response of fine roots to drought stress in cotton (Gossypium hirsutum L.), BMC Plant Biology, 20(1): 328. https://doi.org/10.1186/s12870-020-02531-z Yahoueian S., Bihamta M., Babaei H., and Bazargani M., 2021, Proteomic analysis of drought stress response mechanism in soybean (Glycine max L.) leaves, Food Science & Nutrition, 9(4): 2010-2020. https://doi.org/10.1002/fsn3.2168 Yan S., Tang Z., Su W., and Sun W., 2005, Proteomic analysis of salt stress‐responsive proteins in rice root, Proteomics, 5(1): 235-244. https://doi.org/10.1002/PMIC.200400853 Yuan Z., Zhang C., Zhu W., Yan G., Chen X., Qiu P., Ruzimurod B., Ye W., Qaraevna B., and Yin Z., 2023, Molecular mechanism that underlies cotton response to salt and drought stress revealed by complementary transcriptomic and iTRAQ analyses, Environmental and Experimental Botany, 209: 105288. https://doi.org/10.2139/ssrn.4226698 Zeng Q., Peng F., Wang J., Wang S., Lu X., Bakhsh A., Li Y., Qaraevna B., Ye W., and Yin Z., 2025, Identification of the MAP4K gene family reveals GhMAP4K13 regulates drought and salt stress tolerance in cotton, Physiologia Plantarum, 177(1): e70031. https://doi.org/10.1111/ppl.70031 Zeng W., Peng Y., Zhao X., Wu B., Chen F., Ren B., Zhuang Z., Gao Q., and Ding Y., 2019, Comparative proteomics analysis of the seedling root response of drought-sensitive and drought-tolerant maize varieties to drought stress, International Journal of Molecular Sciences, 20(11): 2793. https://doi.org/10.3390/ijms20112793 Zhang H., Mao L., Xin M., Xing H., Zhang Y., Wu J., Xu D., Wang Y., Shang Y., Wei L., Cui M., Zhuang T., Sun X., and Song X., 2022, Overexpression of GhABF3 increases cotton (Gossypium hirsutum L.) tolerance to salt and drought, BMC Plant Biology, 22(1): 313. https://doi.org/10.1186/s12870-022-03705-7 Zhang H., Ni Z., Chen Q., Guo Z., Gao W., Su X., and Qu Y., 2016, Proteomic responses of drought-tolerant and drought-sensitive cotton varieties to drought stress, Molecular Genetics and Genomics, 291(3): 1293-1303. https://doi.org/10.1007/s00438-016-1188-x

RkJQdWJsaXNoZXIy MjQ4ODYzNA==