CGG2025v16n3

Cotton Genomics and Genetics 2025, Vol.16, No.3, 126-136 http://cropscipublisher.com/index.php/cgg 134 Ghatak A., Chaturvedi P., and Weckwerth W., 2017, Cereal crop proteomics: systemic analysis of crop drought stress responses towards marker-assisted selection breeding, Frontiers in Plant Science, 8: 757. https://doi.org/10.3389/fpls.2017.00757 Guo H., Wang L., Deng Y., and Ye J., 2021, Novel perspectives of environmental proteomics, Science of the Total Environment, 788: 147588. https://doi.org/10.1016/j.scitotenv.2021.147588 Hossain Z., Khatoon A., and Komatsu S., 2013, Soybean proteomics for unraveling abiotic stress response mechanism, Journal of Proteome Research, 12(11): 4670-4684. https://doi.org/10.1021/pr400604b Hu J., Rampitsch C., and Bykova N., 2015, Advances in plant proteomics toward improvement of crop productivity and stress resistancex, Frontiers in Plant Science, 6: 209. https://doi.org/10.3389/fpls.2015.00209 Ijaz A., Anwar Z., Ali A., Ditta A., Shani M., Haidar S., Wang B., Fang L., Khan S., and Khan M., 2024, Unraveling the genetic and molecular basis of heat stress in cotton, Frontiers in Genetics, 15: 1296622. https://doi.org/10.3389/fgene.2024.1296622 Jan N., Rather A., John R., Chaturvedi P., Ghatak A., Weckwerth W., Zargar S., Mir R., Khan M., and Mir R., 2022, Proteomics for abiotic stresses in legumes: present status and future directions, Critical Reviews in Biotechnology, 43(2): 171-190. https://doi.org/10.1080/07388551.2021.2025033 Ji W., Cong R., Li S., Li R., Qin Z., Li Y., Zhou X., Chen S., and Li J., 2016, Comparative proteomic analysis of soybean leaves and roots by iTRAQ provides insights into response mechanisms to short-term salt stress, Frontiers in Plant Science, 7: 573. https://doi.org/10.3389/fpls.2016.00573 Jian H., Sadau S., Wei F., Ahmad A., Lu Z., Ma L., Fu X., Zhang N., Lu J., Yin G., Wang H., and Wei H., 2024, GhMAPK3, a mitogen-activated protein kinase, enhance salt and drought tolerance in cotton (Gossypium hirsutum), Industrial Crops and Products, 214: 118492. https://doi.org/10.1016/j.indcrop.2024.118492 Kausar R., and Komatsu S., 2022, Proteomic approaches to uncover salt stress response mechanisms in crops, International Journal of Molecular Sciences, 24(1): 518. https://doi.org/10.3390/ijms24010518 Koh J., Chen G., Zhu N., Yoo M., Dufresne D., Erickson J., Shao, H., and Chen S., 2015, Comparative proteomic analysis of Brassica napus in response to drought stress, Journal of Proteome Research, 14(8): 3068-3081. https://doi.org/10.1021/pr501323d Kosová K., Vítámvás P., Prášil I., and Renaut J., 2011, Plant proteome changes under abiotic stress-contribution of proteomics studies to understanding plant stress response, Journal of Proteomics, 74(8): 1301-1322. https://doi.org/10.1016/j.jprot.2011.02.006 Li W., Zhao F., Fang W., Xie D., Hou J., Yang X., Zhao Y., Tang Z., Nie L., and Lv S., 2015, Identification of early salt stress responsive proteins in seedling roots of upland cotton (Gossypium hirsutum L.) employing iTRAQ-based proteomic technique, Frontiers in Plant Science, 6: 732. https://doi.org/10.3389/fpls.2015.00732 Liu Y., Lu S., Liu K., Wang S., Huang L., and Guo L., 2019, Proteomics: a powerful tool to study plant responses to biotic stress, Plant Methods, 15(1): 135. https://doi.org/10.1186/s13007-019-0515-8 Luo J., Tang S., Peng X., Yan X., Zeng X., Li J., Li X., and Wu G., 2015, Elucidation of cross-talk and specificity of early response mechanisms to salt and PEG-simulated drought stresses in Brassica napus using comparative proteomic analysis, PLoS ONE, 10(10): e0138974. https://doi.org/10.1371/journal.pone.0138974 Ma Q., Kang J., Long R., Zhang T., Xiong J., Zhang K., Wang T., Yang Q., and Sun Y., 2017, Comparative proteomic analysis of alfalfa revealed new salt and drought stress-related factors involved in seed germination, Molecular Biology Reports, 44(3): 261-272. https://doi.org/10.1007/s11033-017-4104-5 Michaletti A., Naghavi M., Toorchi M., Zolla L., and Rinalducci S., 2018, Metabolomics and proteomics reveal drought-stress responses of leaf tissues from spring-wheat, Scientific Reports, 8(1): 5710. https://doi.org/10.1038/s41598-018-24012-y Nagamalla S., Alaparthi M., Mellacheruvu S., Gundeti R., Earrawandla J., and Sagurthi S., 2021, Morpho-physiological and proteomic response of Bt-cotton and Non-Bt cotton to drought stress, Frontiers in Plant Science, 12: 663576. https://doi.org/10.3389/fpls.2021.663576 Nesatyy V., and Suter M., 2007, Proteomics for the analysis of environmental stress responses in organisms, Environmental Science & Technology, 41(20): 6891-6900. https://doi.org/10.1021/ES070561R Passamani L., Barbosa R., Reis R., Heringer A., Rangel P., Santa-Catarina C., Grativol C., Veiga C., Souza-Filho G., and Silveira V., 2017, Salt stress induces changes in the proteomic profile of micropropagated sugarcane shoots, PLoS ONE, 12(4): e0176076. https://doi.org/10.1371/journal.pone.0176076 Perveen A., Sheheryar S., Ahmad F., Mustafa G., Moura A., Campos F., Domont G., Nishan U., Ullah R., Ibrahim M., Nogueira F., and Shah M., 2025, Integrative physiological, biochemical, and proteomic analysis of the leaves of two cotton genotypes under heat stress, PLOS ONE, 20(1): e0316630. https://doi.org/10.1371/journal.pone.0316630

RkJQdWJsaXNoZXIy MjQ4ODYzNA==