Cotton Genomics and Genetics 2025, Vol.16, No.3, 117-125 http://cropscipublisher.com/index.php/cgg 124 Jaganathan D., Bohra A., Thudi M., and Varshney R., 2020, Fine mapping and gene cloning in the post-NGS era: advances and prospects, Theoretical and Applied Genetics, 133(5): 1791-1810. https://doi.org/10.1007/s00122-020-03560-w Jamshed M., Jia F., Gong J., Palanga K., Shi Y., Li J., Shang H., Liu A., Chen T., Zhang Z., Cai J., Ge Q., Liu Z., Lu Q., Deng X., Tan Y., Rashid H., Hassan M., Sarfraz Z., Gong W., and Yuan Y., 2016, Identification of stable quantitative trait loci (QTLs) for fiber quality traits across multiple environments in Gossypium hirsutum recombinant inbred line population, BMC Genomics, 17(1): 197. https://doi.org/10.1186/s12864-016-2560-2 Jia X., Zhao H., Zhu J., Wang S., Li M., and Wang G., 2024, Quantitative trait loci mapping and candidate gene analysis for fiber quality traits in upland cotton, Agronomy, 14(8): 1719. https://doi.org/10.3390/agronomy14081719 Kemper K., Bowman P., Hayes B., Visscher P., and Goddard M., 2018, A multi-trait Bayesian method for mapping QTL and genomic prediction, Genetics Selection Evolution, 50(1): 10. https://doi.org/10.1186/s12711-018-0377-y Kemper K., Reich C., Bowman P., Jagt C., Chamberlain A., Mason B., Hayes B., and Goddard M., 2015, Improved precision of QTL mapping using a nonlinear Bayesian method in a multi-breed population leads to greater accuracy of across-breed genomic predictions, Genetics Selection Evolution, 47(1): 29. https://doi.org/10.1186/s12711-014-0074-4 Kumar J., Gupta D., Gupta S., Dubey S., Gupta P., and Kumar S., 2017, Quantitative trait loci from identification to exploitation for crop improvement, Plant Cell Reports, 36(8): 1187-1213. https://doi.org/10.1007/s00299-017-2127-y Lan S., Zheng C., Hauck K., McCausland M., Duguid S., Booker H., Cloutier S., and You F., 2020, Genomic prediction accuracy of seven breeding selection traits improved by QTL identification in flax, International Journal of Molecular Sciences, 21(5): 1577. https://doi.org/10.3390/ijms21051577 Larkin D., Lozada D., and Mason R., 2019, Genomic selection-considerations for successful implementation in wheat breeding programs, Agronomy, 9(9): 479. https://doi.org/10.3390/AGRONOMY9090479 Li B., Sun C., Li J., and Gao C., 2024, Targeted genome-modification tools and their advanced applications in crop breeding, Nature Reviews Genetics, 25(9): 603-622. https://doi.org/10.1038/s41576-024-00720-2 Li C., Dong Y., Zhao T., Li L., Li C., Yu E., Mei L., Daud M., He Q., Chen J., and Zhu S., 2016, Genome-wide SNP linkage mapping and QTL analysis for fiber quality and yield traits in the upland cotton recombinant inbred lines population, Frontiers in Plant Science, 7: 1356. https://doi.org/10.3389/fpls.2016.01356 Li Y., Mo T., Ran L., Zeng J., Wang C., Liang A., Dai Y., Wu Y., Zhong Z., and Xiao Y., 2022, Genome resequencing-based high-density genetic map and QTL detection for yield and fiber quality traits in diploid Asiatic cotton (Gossypium arboreum), Molecular Genetics and Genomics, 297(1): 199-212. https://doi.org/10.1007/s00438-021-01848-0 Li Z., and SillanpääM., 2012, Overview of LASSO-related penalized regression methods for quantitative trait mapping and genomic selection, Theoretical and Applied Genetics, 125(3): 419-435. https://doi.org/10.1007/s00122-012-1892-9 Liu R., Gong J., Xiao X., Zhang Z., Li J., Liu A., Lu Q., Shang H., Shi Y., Ge Q., Iqbal M., Deng X., Li S., Pan J., Duan L., Zhang Q., Jiang X., Zou X., Hafeez A., Chen Q., Geng H., Gon, W., and Yuan Y., 2018, GWAS analysis and QTL identification of fiber quality traits and yield components in upland cotton using enriched high-density SNP markers, Frontiers in Plant Science, 9: 1067. https://doi.org/10.3389/fpls.2018.01067 Lu Q., Li P., Yang R., Xiao X., Li Z., Wu Q., Gong J., Ge Q., Liu A., Du S., Wang J., Shi Y., and Yuan Y., 2022, QTL mapping and candidate gene prediction for fiber yield and quality traits in a high-generation cotton chromosome substitution line with Gossypium barbadense segments, Molecular Genetics and Genomics, 297(2): 287-301. https://doi.org/10.1007/s00438-021-01833-7 Meuwissen T., Hayes B., and Goddard M., 2016, Genomic selection: a paradigm shift in animal breeding, Animal Frontiers, 6(1): 6-14. https://doi.org/10.2527/AF.2016-0002 Nguyen K., Grondin A., Courtois B., and Gantet P., 2019, Next-generation sequencing accelerates crop gene discovery, Trends in Plant Science, 24(3): 263-274. https://doi.org/10.1016/j.tplants.2018.11.008 Robertsen C., Hjortshøj R., and Janss L., 2019, Genomic selection in cereal breeding, Agronomy, 9(2): 95. https://doi.org/10.3390/AGRONOMY9020095 Sedeek K., Mahas A., and Mahfouz M., 2019, Plant genome engineering for targeted improvement of crop traits, Frontiers in Plant Science, 10: 114. https://doi.org/10.3389/fpls.2019.00114 Shen X., Guo W., Lu Q., Zhu X., Yuan Y., and Zhang T., 2007, Genetic mapping of quantitative trait loci for fiber quality and yield trait by RIL approach in Upland cotton, Euphytica, 155(3): 371-380. https://doi.org/10.1007/s10681-006-9338-6 Singh R., Kumar K., Bharadwaj C., and Verma P., 2022, Broadening the horizon of crop research: a decade of advancements in plant molecular genetics to divulge phenotype governing genes, Planta, 255(2): 46. https://doi.org/10.1007/s00425-022-03827-0
RkJQdWJsaXNoZXIy MjQ4ODYzNA==