CGG2025v16n2

Cotton Genomics and Genetics 2025, Vol.16, No.2, 48-56 http://cropscipublisher.com/index.php/cgg 54 Akintuyi O., 2024, Adaptive AI in precision agriculture: a review: investigating the use of self-learning algorithms in optimizing farm operations based on real-time data, Research Journal of Multidisciplinary Studies, 7(02): 016-030. https://doi.org/10.53022/oarjms.2024.7.2.0023 Alahmad T., Neményi M., and Nyéki A., 2023, Applying IoT sensors and big data to improve precision crop production: a review, Agronomy, 13(10): 2603. https://doi.org/10.3390/agronomy13102603 Ali A., Hassan M., and Kaul H., 2024, Broad scope of site‐specific crop management and specific role of remote sensing technologies within it—A review, Journal of Agronomy and Crop Science, 210(4): e12732. https://doi.org/10.1111/jac.12732 Bachu L., Kandibanda A., Grandhi N., Athina D., and Ande P., 2024, Machine learning for enhanced crop management and optimization of yield in precision agriculture, In: 2024 8th international conference on I-SMAC (IoT in social, mobile, analytics and cloud) (I-SMAC), IEEE, pp.1289-1293. https://doi.org/10.1109/I-SMAC61858.2024.10714733 Bahmutsky S., Grassauer F., Arulnathan V., and Pelletier N., 2024, A review of life cycle impacts and costs of precision agriculture for cultivation of field crops, Sustainable Production and Consumption, 52: 347-362. https://doi.org/10.1016/j.spc.2024.11.010 Baio F., Da Silva S., Da Silva Camolese H., and Neves D., 2017, Financial analysis of the investment in precision agriculture techniques on cotton crop, Engenharia Agricola, 37(04): 838-847. https://doi.org/10.1590/1809-4430-ENG.AGRIC.V37N4P838-847/2017 Barnes A., Soto I., Eory V., Beck B., Balafoutis A., Sánchez B., Vangeyte J., Fountas S., Wal T., and Gómez-Barbero M., 2019, Exploring the adoption of precision agricultural technologies: a cross regional study of EU farmers, Land Use Policy, 80: 163-174. https://doi.org/10.1016/J.LANDUSEPOL.2018.10.004 Chen X., Qi Z., Gui D., Sima M., Zeng F., Li L., Li X., and Gu Z., 2020, Evaluation of a new irrigation decision support system in improving cotton yield and water productivity in an arid climate, Agricultural Water Management, 234: 106139. https://doi.org/10.1016/j.agwat.2020.106139 Chen Y., Yu Z., Han Z., Sun W., and He L., 2023, A decision-making system for cotton irrigation based on reinforcement learning strategy, Agronomy, 14(1): 11. https://doi.org/10.3390/agronomy14010011 Daraojimba D., Adewusi A., Asuzu O., Olorunsogo T., Iwuanyanwu C., and Adaga E., 2024, AI in precision agriculture: a review of technologies for sustainable farming practices, World Journal of Advanced Research and Reviews, 21(1): 2276-2285. https://doi.org/10.30574/wjarr.2024.21.1.0314 Debnath B., and Basu S., 2023, AI-powered precision agriculture: reshaping farming for efficiency, sustainability, and global impact, International Journal on Agricultural Sciences, 14(2): 63-66. https://doi.org/10.53390/ijas.2023.14203 Dhaliwal J., Panday D., Saha D., Lee J., Jagadamma S., Schaeffer S., and Mengistu A., 2022, Predicting and interpreting cotton yield and its determinants under long-term conservation management practices using machine learning, Computers and Electronics in Agriculture, 199: 107107. https://doi.org/10.1016/j.compag.2022.107107 Durai R., Vijayakumar R., Lakshmisridevi S., Bhanu S., and Arunkumar U., 2024, IoT Based optical sensor network for precision agriculture, In: 2024 international conference on optimization computing and wireless communication (ICOCWC), IEEE, pp.1-7. https://doi.org/10.1109/ICOCWC60930.2024.10470879 Feng L., Wan S., Zhang Y., and Dong H., 2024, Xinjiang cotton: achieving super-high yield through efficient utilization of light, heat, water, and fertilizer by three generations of cultivation technology systems, Field Crops Research, 312: 109401. https://doi.org/10.1016/j.fcr.2024.109401 Filintas A., Nteskou A., Kourgialas N., Gougoulias N., and Hatzichristou E., 2022, A comparison between variable deficit irrigation and farmers’ irrigation practices under three fertilization levels in cotton yield (Gossypium hirsutum L.) using precision agriculture, remote sensing, soil analyses, and crop growth modeling, Water, 14(17): 2654. https://doi.org/10.3390/w14172654 Finger R., Swinton S., Benni N., and Walter A., 2019, Precision farming at the nexus of agricultural production and the environment, Annual Review of Resource Economics, 11(1): 313-335. https://doi.org/10.1146/ANNUREV-RESOURCE-100518-093929 Gupta R., Shankar A., Ma B., Bhatt R., Al-Huqail A., Siddiqui M., and Kumar R., 2022, Precision nitrogen management in Bt cotton (Gossypium hirsutum) improves seed cotton yield and nitrogen use efficiency, and reduces nitrous oxide emissions, Sustainability, 14(4): 2007. https://doi.org/10.3390/su14042007 Haghverdi A., Washington-Allen R., and Leib B., 2018, Prediction of cotton lint yield from phenology of crop indices using artificial neural networks, Computers and Electronics in Agriculture, 152: 186-197. https://doi.org/10.1016/J.COMPAG.2018.07.021 Hoque A., and Padhiary M., 2024, Automation and AI in precision agriculture: innovations for enhanced crop management and sustainability, Asian Journal of Research in Computer Science, 17(10): 95-109. https://doi.org/10.9734/ajrcos/2024/v17i10512

RkJQdWJsaXNoZXIy MjQ4ODYzNA==