CGG_2025v16n1

Cotton Genomics and Genetics 2025, Vol.16, No.1, 12-20 http://cropscipublisher.com/index.php/cgg 20 Patil A., Pawar B., Wagh S., Shinde H., Shelake R., Markad N., Bhute N., Červený J., and Wagh R., 2024, Abiotic stress in cotton: insights into plant responses and biotechnological solutions, Agriculture, 14(9): 1638. https://doi.org/10.3390/agriculture14091638 Peng R., Jones D., Liu F., and Zhang B., 2020, From sequencing to genome editing for cotton improvement, Trends in biotechnology, 39(3): 221-224. https://doi.org/10.1016/j.tibtech.2020.09.001 Rahman M., Zulfiqar S., Raza M., Ahmad N., and Zhang B., 2022, Engineering abiotic stress tolerance in crop plants through CRISPR genome editing, Cells, 11(22): 3590. https://doi.org/10.3390/cells11223590 Rai G., Khanday D., Kumar P., Magotra I., Choudhary S., Kosser R., Kalunke R., Giordano M., Corrado G., Rouphael Y., and Pandey S., 2023, Enhancing crop resilience to drought stress through CRISPR-Cas9 genome editing, Plants, 12(12): 2306. https://doi.org/10.3390/plants12122306 Sadau S., Liu Z., Ninkuu V., Guan L., and Sun X., 2024, DREB transcription factors are crucial regulators of abiotic stress responses in Gossypiumspp., Plant Stress, 11: 100350. https://doi.org/10.1016/j.stress.2024.100350 Saleem M., Khan S., Ahmad A., Rana I., Naveed Z., and Khan A., 2024, The 4Fs of cotton: genome editing of cotton for fiber, food, feed, and fuel to achieve zero hunger, Frontiers in Genome Editing, 6: 1401088. https://doi.org/10.3389/fgeed.2024.1401088 Saud S., and Wang L., 2022, Mechanism of cotton resistance to abiotic stress, and recent research advances in the osmoregulation related genes, Frontiers in Plant Science, 13: 972635. https://doi.org/10.3389/fpls.2022.972635 Shinwari Z., Jan S., Nakashima K., and Yamaguchi-Shinozaki K., 2020, Genetic engineering approaches to understanding drought tolerance in plants, Plant Biotechnology Reports, 14(2): 151-162. https://doi.org/10.1007/s11816-020-00598-6 Shiraku M., Magwanga R., Zhang Y., Hou Y., Kirungu J., Mehari T., Xu Y., Wang Y., Wang K., Cai X., Zhou Z., and Liu F., 2022, Late embryogenesis abundant gene LEA3 (Gh_A08G0694) enhances drought and salt stress tolerance in cotton, International Journal of Biological Macromolecules, 207: 700-714. https://doi.org/10.1016/j.ijbiomac.2022.03.110 Thangaraj A., Kaul R., Sharda S., and Kaul T., 2024, Revolutionizing cotton cultivation: a comprehensive review of genome editing technologies and their impact on breeding and production, Biochemical and Biophysical Research Communications, 742: 151084. https://doi.org/10.1016/j.bbrc.2024.151084 Wang C., Lu G., Hao Y., Guo H., Guo Y., Zhao J., and Cheng H., 2017, ABP9, a maize bZIP transcription factor, enhances tolerance to salt and drought in transgenic cotton, Planta, 246(3): 453-469. https://doi.org/10.1007/s00425-017-2704-x Wei W., Ju J., Zhang X., Ling P., Luo J., Li Y., Xu W., Su J., Zhang X., and Wang C., 2024, GhBRX.1, GhBRX.2, and GhBRX4.3 improve resistance to salt and cold stress in upland cotton, Frontiers in Plant Science, 15: 1353365. https://doi.org/10.3389/fpls.2024.1353365 Zafar S., Zaidi S., Gaba Y., Singla-Pareek S., Dhankher O., Li X., Mansoor S., and Pareek A., 2020, Engineering abiotic stress tolerance via CRISPR-Cas mediated genome editing, Journal of Experimental Botany, 71(2): 470-479. https://doi.org/10.1093/jxb/erz476 Zhang H., Zhang Y., Xu N., Rui C., Fan Y., Wang J., Han M., Wang Q., Sun L., Chen X., Lu X., Wang D., Chen C., and Ye W., 2021a, Genome-wide expression analysis of phospholipase A1 (PLA1) gene family suggests phospholipase A1-32 gene responding to abiotic stresses in cotton, International Journal of Biological Macromolecules, 192: 1058-1074. https://doi.org/10.1016/j.ijbiomac.2021.10.038 Zhang L., Tian W., Huang G., Liu B., Wang A., Zhu J., and Guo X., 2021b, The SikCuZnSOD3 gene improves abiotic stress resistance in transgenic cotton, Molecular Breeding, 41(3): 26. https://doi.org/10.1007/s11032-021-01217-0

RkJQdWJsaXNoZXIy MjQ4ODYzNA==