CGG_2024v15n2

Cotton Genomics and Genetics 2024, Vol.15, No.2, 112-126 http://cropscipublisher.com/index.php/cgg 126 Pavlovic S., Klaassen K., Stankovic B., Stojiljkovic M., and Zukic B., 2020, Next-generation sequencing: the enabler and the way ahead, In: Kambouris M.E., and Velegraki A. (eds), Microbiomics, Academic Press, London, UK, pp.175-200. https://doi.org/10.1016/B978-0-12-816664-2.00009-8 Pereira R., Oliveira J., and Sousa M., 2020, Bioinformatics and computational tools for next-generation sequencing analysis in clinical genetics, Journal of Clinical Medicine, 9(1): 132. https://doi.org/10.3390/jcm9010132 Pervez M.T., Hasnain M.J.U., Abbas S.H., Moustafa M.F., Aslam N., and Shah S.S.M., 2022, [Retracted] a comprehensive review of performance of next‐ generation sequencing platforms, BioMed Research International, 2022(1): 3457806. https://doi.org/10.1155/2022/3457806 Qin L., Li J., Wang Q., Xu Z., Sun L., Alariqi M., Manghwar H., Wang G., Li B., Ding X., Rui H., Huang H., Lu T., Lindsey K., Daniell H., Zhang X., and Jin S., 2020, High‐efficient and precise base editing of C•G to T•A in the allotetraploid cotton (Gossypium hirsutum) genome using a modified CRISPR/Cas9 system, Plant Biotechnology Journal, 18(1): 45-56. https://doi.org/10.1111/pbi.13168 Ren B., Liu L., Li S., Kuang Y., Wang J., Zhang D., Zhou X., Lin H., and Zhou H., 2019, Cas9-NG greatly expands the targeting scope of the genome-editing toolkit by recognizing NG and other atypical PAMs in rice, Molecular Plant, 12(7): 1015-1026. https://doi.org/10.1016/j.molp.2019.03.010 Rexach J., Lee H., Martinez-Agosto J.A., Németh A.H., and Fogel B.L., 2019, Clinical application of next-generation sequencing to the practice of neurology, The Lancet Neurology, 18(5): 492-503. https://doi.org/10.1016/S1474-4422(19)30033-X Sahu P.K., Sao R., Mondal S., Vishwakarma G., Gupta S.K., Kumar V., Singh S., Sharma D., and Das B.K., 2020, Next generation sequencing based forward genetic approaches for identification and mapping of causal mutations in crop plants: a comprehensive review, Plants, 9(10): 1355. https://doi.org/10.3390/plants9101355 Salk J.J., Schmitt M.W., and Loeb L.A., 2018, Enhancing the accuracy of next-generation sequencing for detecting rare and subclonal mutations, Nature Reviews Genetics, 19(5): 269-285. https://doi.org/10.1038/nrg.2017.117 Šarhanová P., Pfanzelt S., Brandt R., Himmelbach A., and Blattner F.R., 2018, SSR‐seq: genotyping of microsatellites using next‐generation sequencing reveals higher level of polymorphism as compared to traditional fragment size scoring, Ecology and Evolution, 8(22): 10817-10833. https://doi.org/10.1002/ece3.4533 Satam H., Joshi K., Mangrolia U., Waghoo S., Zaidi G., Rawool S., Thakare R., Banday S., Mishra A., Das G., and Malonia S.K., 2023, Next-generation sequencing technology: current trends and advancements, Biology, 12(7): 997. https://doi.org/10.3390/biology12070997 Wang J., Zhang Z., Gong Z., Liang Y., Ai X., Sang Z., Guo J., Li X., and Zheng J., 2022, Analysis of the genetic structure and diversity of upland cotton groups in different planting areas based on SNP markers, Gene, 809: 146042. https://doi.org/10.1016/j.gene.2021.146042 Yang Y., Saand M.A., Huang L., Abdelaal W.B., Zhang J., Wu Y., Li J., Sirohi M., and Wang F., 2021, Applications of multi-omics technologies for crop improvement, Frontiers in Plant Science, 12: 563953. https://doi.org/10.3389/fpls.2021.563953 Zheng X., Chen Y., Zhou Y., Shi K., Hu X., Li D., Ye H., Zhou Y., and Wang K., 2021, Full-length annotation with multistrategy RNA-seq uncovers transcriptional regulation of lncRNAs in cotton, Plant Physiology, 185(1): 179-195. https://doi.org/10.1093/plphys/kiaa003

RkJQdWJsaXNoZXIy MjQ4ODYzNQ==