CGG_2024v15n2

Cotton Genomics and Genetics 2024, Vol.15, No.2, 112-126 http://cropscipublisher.com/index.php/cgg 125 Cui J., Shen N., Lu Z., Xu G., Wang Y., and Jin B., 2020, Analysis and comprehensive comparison of PacBio and nanopore-based RNA sequencing of the Arabidopsis transcriptome, Plant Methods, 16: 1-13. https://doi.org/10.1186/s13007-020-00629-x Do T., Dame-Teixeira N., and Deng D., 2021, Applications of next generation sequencing (NGS) technologies to decipher the oral microbiome in systemic health and disease, Frontiers in Cellular and Infection Microbiology, 11: 801122. https://doi.org/10.3389/fcimb.2021.801122 Donlin L.T., Park S.H., Giannopoulou E., Ivovic A., Park-Min K.H., Siegel R.M., and Ivashkiv L.B., 2019, Insights into rheumatic diseases from next-generation sequencing, Nature Reviews Rheumatology, 15(6): 327-339. https://doi.org/10.1038/s41584-019-0217-7 Ejigu G.F., and Jung J., 2020, Review on the computational genome annotation of sequences obtained by next-generation sequencing, Biology, 9(9): 295. https://doi.org/10.3390/biology9090295 Ferros A.E., Ray A., and Raj A., 2022, Next-generation sequencing and its data analysis, In: Hemalatha N., Vijayakumar S., and Shetty K.A. (eds.), Information technology & bioinformatics: international conference on advance it, engineering and management - Sacaim-2022 (Vol 1), Red'Shine Publication, India, pp.196. Henriksen R.A., Zhao L., and Korneliussen T.S., 2023, NGSNGS: next-generation simulator for next-generation sequencing data, Bioinformatics, 39(1): btad041. https://doi.org/10.1093/bioinformatics/btad041 Hu T., Chitnis N., Monos D., and Dinh A., 2021, Next-generation sequencing technologies: an overview, Human Immunology, 82(11): 801-811. https://doi.org/10.1016/j.humimm.2021.02.012 Hwang B., Lee J.H., and Bang D., 2018, Single-cell RNA sequencing technologies and bioinformatics pipelines, Experimental and Molecular Medicine, 50(8): 1-14. https://doi.org/10.1038/s12276-018-0071-8 Isobe S., Shirasawa K., and Hirakawa H., 2020, Advances of whole genome sequencing in strawberry with NGS technologies, The Horticulture Journal, 89(2): 108-114. https://doi.org/10.2503/hortj.UTD-R012 Kumar K.R., Cowley M.J., and Davis R.L., 2019, Next-generation sequencing and emerging technologies, Semin Thromb Hemost, 45(7): 661-673. https://doi.org/10.1055/s-0039-1688446 Kushanov F., Turaev O., Ernazarova D., Gapparov B., Oripova B., Kudratova M., Rafieva F., Khalikov K., Erjigitov D., Khidirov M., Kholova M., Khusenov N., Amanboyeva R., Saha S., Yu J., and Abdurakhmonov I., 2021, Genetic diversity, QTL mapping, and marker-assisted selection technology in cotton (Gossypium spp.), Frontiers in Plant Science, 12: 779386. https://doi.org/10.3389/fpls.2021.779386 Lang D., Zhang S., Ren P., Liang F., Sun Z., Meng G., Tan Y., Li X., Lai Q., Han L., Wang D., Hu F., Wang W., and Liu S., 2020, Comparison of the two up-to-date sequencing technologies for genome assembly: HiFi reads of pacific biosciences sequel II system and ultralong reads of Oxford Nanopore, Gigascience, 9(12): giaa123. https://doi.org/10.1093/gigascience/giaa123 Le Nguyen K., Grondin A., Courtois B., and Gantet P., 2019, Next-generation sequencing accelerates crop gene discovery, Trends in Plant Science, 24(3): 263-274. https://doi.org/10.1016/j.tplants.2018.11.008 Levy S.E., and Boone B.E., 2019, Next-generation sequencing strategies, Cold Spring Harbor Perspectives in Medicine, 9(7): a025791. https://doi.org/10.1101/cshperspect.a025791 Li C., and Zhang B., 2019, Genome editing in cotton using CRISPR/Cas9 system, Transgenic Cotton: Methods and Protocols, 2018: 95-104. https://doi.org/10.1007/978-1-4939-8952-2_8 Lu X., Chen X., Wang D., Yin Z., Wang J., Fu X., Wang S., Guo L., Zhao L., Cui R., Dai M., Rui C., Fan Y., Zhang Y., Sun L., Malik W.A., Han M., Chen C., and Ye W., 2022, A high-quality assembled genome and its comparative analysis decode the adaptive molecular mechanism of the number one Chinese cotton variety CRI-12, Gigascience, 11: giac019. https://doi.org/10.1093/gigascience/giac019 Ma Z.S., Li L., Ye C., Peng M., and Zhang Y.P., 2019, Hybrid assembly of ultra-long nanopore reads augmented with 10x-genomics contigs: demonstrated with a human genome, Genomics, 111(6): 1896-1901. https://doi.org/10.1016/j.ygeno.2018.12.013 Midha M.K., Wu M., and Chiu K.P., 2019, Long-read sequencing in deciphering human genetics to a greater depth, Human Genetics, 138(11): 1201-1215. https://doi.org/10.1007/s00439-019-02064-y Morganti S., Tarantino P., Ferraro E., D'Amico P., Viale G., Trapani D., Duso B., and Curigliano G., 2019, Complexity of genome sequencing and reporting: next generation sequencing (NGS) technologies and implementation of precision medicine in real life, Critical Reviews in Oncology/Hematology, 133: 171-182. https://doi.org/10.1016/j.critrevonc.2018.11.008 Muhammed A.S.H.R., Ashwin P.A., Sriprata R., Sandra N., Sandhiya P., Gnana S.G., and Palak B., 2023, From DNA to data: transcending beyond the double helix and demystifying the genetic alchemy of life through NGS to empower precision medicine, J Clin Med Res, 5(4): 162-189.

RkJQdWJsaXNoZXIy MjQ4ODYzNQ==