MSB_2025v16n6

Molecular Soil Biology 2025, Vol.16, No.6, 297-305 http://bioscipublisher.com/index.php/msb 304 Li C., Guo J., Wang D., Chen X., Guan H., Li Y., Zhang D., Liu X., He G., Wang T., and Li Y., 2023, Genomic insight into changes of root architecture under drought stress in maize, Plant, Cell and Environment, 46(6): 1860-1872. https://doi.org/10.1111/pce.14567 Li P., Zhang Z., Xiao G., Zhao Z., He K., Yang X., Pan Q., Mi G., Jia Z., Yan J., Chen F., and Yuan L., 2024a, Genomic basis determining root system architecture in maize, Theoretical and Applied Genetics, 137(5): 102. https://doi.org/10.1007/s00122-024-04606-z Li Y., Bai L., Wei S., Wu H., Li R., Wang Y., and Wang Z., 2024b, Integrating Heterosis for Root Architecture and Nitrogen Use Efficiency of Maize: A Comparison between Hybrids from Different Decades, Agronomy, 14(9): 2018. https://doi.org/10.3390/agronomy14092018 Lippold E., Lucas M., Fahrenkampf T., Schlüter S., and Vetterlein D., 2022, Macroaggregates of loam in sandy soil show little influence on maize growth, due to local adaptations of root architecture to soil heterogeneity, Plant and Soil, 478: 163-175. https://doi.org/10.1007/s11104-022-05413-5 Liu C., Pang S., Li X., Liu P., Zhou Y., Lin X., Gu S., and Wang D., 2025, Layered nitrogen fertilization regulates root morphology to promote synergistic nitrogen and phosphorus absorption in maize (Zeamays L.), Field Crops Research, 322: 109737. https://doi.org/10.1016/j.fcr.2025.109737 Liu J., Chen F., Olokhnuud C., Glass A., Tong Y., Zhang F., and Mi G., 2009, Root size and nitrogen-uptake activity in two maize (Zea mays) inbred lines differing in nitrogen-use efficiency, Journal of Plant Nutrition and Soil Science, 172: 230-236. https://doi.org/10.1002/jpln.200800028 López G., Ahmadi S., Amelung W., Athmann M., Ewert F., Gaiser T., Gocke M., Kautz T., Postma J., Rachmilevitch S., Schaaf G., Schnepf A., Stoschus A., Watt M., Yu P., and Seidel S., 2023, Nutrient deficiency effects on root architecture and root-to-shoot ratio in arable crops, Frontiers in Plant Science, 13: 1067498. https://doi.org/10.3389/fpls.2022.1067498 Messina C., McDonald D., Poffenbarger H., Clark R., Salinas A., Fang Y., Gho C., Tang T., Graham G., Hammer G., and Cooper M., 2021, Reproductive resilience but not root architecture underpins yield improvement under drought in maize, Journal of Experimental Botany, 72: 5235-5245. https://doi.org/10.1093/jxb/erab231 Mmbando G., and Ngongolo K., 2024, The recent genetic modification techniques for improve soil conservation, nutrient uptake and utilization, GM Crops and Food, 15: 233-247. https://doi.org/10.1080/21645698.2024.2377408 Mu X., Chen F., Wu Q., Chen Q., Wang J., Yuan L., and Mi G., 2015, Genetic improvement of root growth increases maize yield via enhanced post-silking nitrogen uptake, European Journal of Agronomy, 63: 55-61. https://doi.org/10.1016/j.eja.2014.11.009 Ramírez-Flores M., Bello-Bello E., Rellán-Álvarez R., Rellán-Álvarez R., Sawers R., Sawers R., and Olalde-Portugal V., 2019, Inoculation with the mycorrhizal fungus Rhizophagus irregularis modulates the relationship between root growth and nutrient content in maize (Zeamays ssp. mays L.), Plant Direct, 3(12): e00192. https://doi.org/10.1101/695411 Ren W., Zhao L., Liang J., Wang L., Chen L., Li P., Liu Z., Li X., Zhang Z., Li J., He K., Zhao Z., Ali F., Mi G., Yan J., Zhang F., Chen F., Yuan L., and Pan Q., 2022, Genome-wide dissection of changes in maize root system architecture during modern breeding, Nature Plants, 8: 1408-1422. https://doi.org/10.1038/s41477-022-01274-z Shao H., Xia T., Wu D., Chen F., and Mi G., 2018, Root growth and root system architecture of field-grown maize in response to high planting density, Plant and Soil, 430: 395-411. https://doi.org/10.1007/s11104-018-3720-8 Van Der Bom F., Siegwart L., Sangiorgi G., and Kirschner G., 2025, Mineral acquisition from a different angle – how the root angle in cereals determines nutrient uptake, The New Phytologist, 248: 576-586. https://doi.org/10.1111/nph.70466 Van Der Bom F., Williams A., and Bell M., 2020. Root architecture for improved resource capture: trade-offs in complex environments.. Journal of experimental botany. https://doi.org/10.1093/jxb/eraa324 Vetterlein D., Phalempin M., Lippold E., Schlüter S., Schreiter S., Ahmed M., Carminati A., Duddek P., Jorda H., Bienert G., Bienert M., Tarkka M., Ganther M., Oburger E., Santangeli M., Javaux M., and Vanderborght J., 2022, Root hairs matter at field scale for maize shoot growth and nutrient uptake, but root trait plasticity is primarily triggered by texture and drought, Plant and Soil, 478: 119-141. https://doi.org/10.1007/s11104-022-05434-0 Wan H., Liu X., Shi Q., Chen Y., Jiang M., Zhang J., Cui B., Hou J., Wei Z., Hossain M., and Liu F., 2023, Biochar amendment alters root morphology of maize plant: Its implications in enhancing nutrient uptake and shoot growth under reduced irrigation regimes, Frontiers in Plant Science, 14: 1122742. https://doi.org/10.3389/fpls.2023.1122742 Wang H., Tang X., Yang X., Fan Y., Xu Y., Li P., Xu C., and Yang Z., 2021, Exploiting natural variation in crown root traits via genome-wide association studies in maize, BMC Plant Biology, 21(1): 346. https://doi.org/10.1186/s12870-021-03127-x

RkJQdWJsaXNoZXIy MjQ4ODYzNA==