Molecular Soil Biology 2025, Vol.16, No.6, 297-305 http://bioscipublisher.com/index.php/msb 303 Conflict of Interest Disclosure The authors affirm that this research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest. Reference Chen X., Liu P., Zhao B., Zhang J., Ren B., Li Z., and Wang Z., 2022, Root physiological adaptations that enhance the grain yield and nutrient use efficiency of maize (Zeamays L) and their dependency on phosphorus placement depth, Field Crops Research, 276: 108378. https://doi.org/10.1016/j.fcr.2021.108378 Chen Z., Hou Y., Yan J., Cheng S., Wang Y., Feng G., and Cai H., 2025, Comprehensive Responses of Root System Architecture and Anatomy to Nitrogen Stress in Maize (Zeamays L.) Genotypes with Contrasting Nitrogen Efficiency, Agronomy, 15(9): 2083. https://doi.org/10.3390/agronomy15092083 Chi Y., Muhammad I., Ali S., Jahan M., Yang L., and Zhou X., 2025, Optimizing water and nitrogen management improves maize productivity by regulating root development in the cold semi-arid Songnen plains of Northeast China, Frontiers in Plant Science, 16: 1658353. https://doi.org/10.3389/fpls.2025.1658353 Dechorgnat J., Francis K., Dhugga K., Rafalski J., Tyerman S., and Kaiser B., 2018, Root Ideotype Influences Nitrogen Transport and Assimilation in Maize, Frontiers in Plant Science, 9: 531. https://doi.org/10.3389/fpls.2018.00531 Dong S., Bismark A., Li S., Gao Q., Zhou X., and Li C., 2024, Ammonium Polyphosphate Promotes Maize Growth and Phosphorus Uptake by Altering Root Properties, Plants, 13(23): 3407. https://doi.org/10.3390/plants13233407 Galindo-Castañeda T., Lynch J., Six J., and Hartmann M., 2022, Improving Soil Resource Uptake by Plants Through Capitalizing on Synergies Between Root Architecture and Anatomy and Root-Associated Microorganisms, Frontiers in Plant Science, 13: 827369. https://doi.org/10.3389/fpls.2022.827369 Guo S., Liu Z., Zhou Z., Lu T., Chen S., He M., Zeng X., Chen K., Yu H., Shangguan Y., Dong Y., Chen F., Liu Y., and Qin Y., 2022, Root System Architecture Differences of Maize Cultivars Affect Yield and Nitrogen Accumulation in Southwest China, Agriculture, 12(2): 209. https://doi.org/10.3390/agriculture12020209 Guo W., Wang F., Lv J., Yu J., Wu Y., Wuriyanghan H., Le L., and Pu L., 2025, Phenotyping, genome‐wide dissection, and prediction of maize root architecture for temperate adaptability, iMeta, 4(2): e70015. https://doi.org/10.1002/imt2.70015 Hao R., Li H., Qin S., Chen W., Guo Q., Huang Y., Chen X., and Li Y., 2025, Effect of Drought Stress on Root Metabolome and Soil Microbial Characteristics forMaize (Zeamays L.) Seedlings, Current Microbiology, 82(9): 415. https://doi.org/10.1007/s00284-025-04395-8 Hochholdinger F., Yu P., and Marcon C., 2018, Genetic Control of Root System Development in Maize, Trends in plant science, 23(1): 79-88. https://doi.org/10.1016/j.tplants.2017.10.004 Holz M., Zarebanadkouki M., Benard P., Hoffmann M., and Dubbert M., 2024, Root and rhizosphere traits for enhanced water and nutrients uptake efficiency in dynamic environments, Frontiers in Plant Science, 15: 1383373. https://doi.org/10.3389/fpls.2024.1383373 Jan M., Li M., Liu C., Liaqat W., Altaf M., Barutçular C., and Baloch F., 2025, Multivariate Analysis of Root Architecture, Morpho-Physiological, and Biochemical Traits Reveals Higher Nitrogen Use Efficiency Heterosis in Maize Hybrids During Early Vegetative Growth, Plants, 14(3): 399. https://doi.org/10.3390/plants14030399 Jia X., Liu P., and Lynch J., 2018, Greater lateral root branching density in maize improves phosphorus acquisition from low phosphorus soil, Journal of Experimental Botany, 69: 4961-4970. https://doi.org/10.1093/jxb/ery252 Jiang Y., and Whalen J., 2025. Plasticity of maize (Zeamays L.) roots in water‐deficient and nitrogen‐limited soil. Crop Science. https://doi.org/10.1002/csc2.70084 Jing J., Gao W., Cheng L., Wang X., Duan F., Yuan L., Rengel Z., Zhang F., Li H., Cahill J., and Shen J., 2022, Harnessing root-foraging capacity to improve nutrient-use efficiency for sustainable maize production, Field Crops Research, 279: 108462. https://doi.org/10.1016/j.fcr.2022.108462 Karnatam K., Chhabra G., Saini D., Singh R., Kaur G., Praba U., Kumar P., Goyal S., Sharma P., Ranjan R., Sandhu S., Kumar R., and Vikal Y., 2023, Genome-Wide Meta-Analysis of QTLs Associated with Root Traits and Implications for Maize Breeding, International Journal of Molecular Sciences, 24(7): 6135. https://doi.org/10.3390/ijms2407613 Keerthi G., Mallikarjuna M., Jha S., Pandey R., Veeraya P., Lohithaswa H., and Chinnusamy V., 2025, Unravelling root system architecture plasticity in response to abiotic stresses in maize, Scientific Reports, 15(1): 20433. https://doi.org/10.1038/s41598-025-04123-z Kishore A., Sreelatha D., Reddy M., Kumar M., and Kumar T., 2025, Analysing Root Architecture and Nutrients Uptake in Zero-till Rabi Maize with Kharif Legumes and Nitrogen Gradient Levels, Legume Research - an International Journal, 48(7): 1160. https://doi.org/10.18805/lr-5316
RkJQdWJsaXNoZXIy MjQ4ODYzNA==