MSB_2025v16n6

Molecular Soil Biology 2025, Vol.16, No.6, 287-296 http://bioscipublisher.com/index.php/msb 295 Kadam N., Kadam N., Tamilselvan A., Tamilselvan A., Lawas L., Quiñones C., Bahuguna R., Thomson M., Thomson M., Dingkuhn M., Muthurajan R., Struik P., Yin X., and Jagadish S., 2017, Genetic Control of Plasticity in Root Morphology and Anatomy of Rice in Response to Water Deficit1, Plant Physiology, 174: 2302-2315. https://doi.org/10.1104/pp.17.00500 Kitomi Y., Hanzawa E., Kuya N., Inoue H., Hara N., Kawai S., Kanno N., Endo M., Sugimoto K., Yamazaki T., Sakamoto S., Sentoku N., Wu J., Kanno H., Mitsuda N., Toriyama K., Sato T., and Uga Y., 2020, Root angle modifications by the DRO1 homolog improve rice yields in saline paddy fields, Proceedings of the National Academy of Sciences of the United States of America, 117: 21242-21250. https://doi.org/10.1073/pnas.2005911117 Lavarenne J., Gonin M., Guyomarc’h S., Rouster J., Champion A., Sallaud C., Laplaze L., Gantet P., and Lucas M., 2019, Inference of the gene regulatory network acting downstream of CROWN ROOTLESS1 in rice reveals a regulatory cascade linking genes involved in auxin signaling, crown root initiation and root meristem specification and maintenance, The Plant Journal : for Cell and Molecular Biology, 100(5): 954-968. https://doi.org/10.1111/tpj.14487 Lelekami M., Pahlevani M., Nezhad K., and Mashaki K., 2025a, Gene metabolite relationships revealed metabolic adaptations of rice salt tolerance, Scientific Reports, 15(1): 2404. https://doi.org/10.1038/s41598-025-86604-9 Lelekami M., Pahlevani M., Nezhad K., and Mashaki K., 2025b, Transcriptome and network analysis pinpoint ABA and plastid ribosomal proteins as main contributors to salinity tolerance in the rice variety, CSR28, PLoS One, 20(4): e0321181. https://doi.org/10.1371/journal.pone.0321181 Li G., Wang K., Qin Q., Li Q., Mo F., Nangia V., and Liu Y., 2023, Integrated Microbiome and Metabolomic Analysis Reveal Responses of Rhizosphere Bacterial Communities and Root exudate Composition to Drought and Genotype in Rice (Oryza sativa L.), Rice, 16(1): 19. https://doi.org/10.1186/s12284-023-00636-1 Li Y., Wang J., Gao Y., Pandey B., Ogorek L., Zhao Y., Quan R., Zhao Z., Jiang L., Huang R., and Qin H., 2024, The OsEIL1–OsWOX11 transcription factor module controls rice crown root development in response to soil compaction, The Plant Cell, 36: 2393-2409. https://doi.org/10.1093/plcell/koae083 Liu J., Tang M., Lu Y., Yan H., Liu Y., Cao Y., Song X., Liu Q., and Ji X., 2025, OsVPS16 Deficiency Enhances Salinity Tolerance in Rice by Regulating Ion Homeostasis, Antioxidant Activity, and Stress-Responsive Gene Expression, Agronomy, 15(5): 1146. https://doi.org/10.3390/agronomy15051146 Ma B., Yin C., He S., Lu X., Zhang W., Lu T., Chen S., and Zhang J., 2014, Ethylene-Induced Inhibition of Root Growth Requires Abscisic Acid Function in Rice (Oryza sativa L.) Seedlings, PLoS Genetics, 10(10): e1004701. https://doi.org/10.1371/journal.pgen.1004701 Mao C., He J., Liu L., Deng Q., Yao X., Liu C., Qiao Y., Li P., and Ming F., 2019, OsNAC2 integrates auxin and cytokinin pathways to modulate rice root development, Plant Biotechnology Journal, 18: 429-442. https://doi.org/10.1111/pbi.13209 Meng F., Xiang D., Zhu J., Li Y., and Mao C., 2019, Molecular Mechanisms of Root Development in Rice, Rice, 12(1): 1. https://doi.org/10.1186/s12284-018-0262-x Moon S., Chandran A., Gho Y., Park S., Kim S., Yoo Y., and Jung K., 2018, Integrated omics analysis of root-preferred genes across diverse rice varieties including Japonica and indica cultivars, Journal of plant physiology, 220: 11-23. https://doi.org/10.1016/j.jplph.2017.10.003 Ogata T., Ishizaki T., Fujita M., and Fujita Y., 2020, CRISPR/Cas9-targeted mutagenesis of OsERA1 confers enhanced responses to abscisic acid and drought stress and increased primary root growth under nonstressed conditions in rice, PLoS ONE, 15(12): e0243376. https://doi.org/10.1371/journal.pone.0243376 Qin H., Wang J., Zhou J., Qiao J., Li Y., Quan R., and Huang R., 2022, Abscisic acid promotes auxin biosynthesis to inhibit primary root elongation in rice, Plant Physiology, 191: 1953-1967. https://doi.org/10.1093/plphys/kiac586 Ramanathan V., Rahman H., Subramanian S., Nallathambi J., Kaliyaperumal A., Manickam S., Ranganathan C., and Muthurajan R., 2018, OsARD4 encoding an acireductone dioxygenase improves root architecture in rice by promoting development of secondary roots, Scientific Reports, 8(1): 15713. https://doi.org/10.1038/s41598-018-34053-y Reynoso M., Borowsky A., Pauluzzi G., Yeung E., Zhang J., Formentin E., Velasco J., Cabanlit S., Duvenjian C., Prior M., Akmakjian G., Deal R., Sinha N., Brady S., Girke T., and Bailey-Serres J., 2022, Gene regulatory networks shape developmental plasticity of root cell types under water extremes in rice, Developmental Cell, 57(9): 1177-1192. https://doi.org/10.1016/j.devcel.2022.04.013 Seo D., Seomun S., Choi Y., and Jang G., 2020, Root Development and Stress Tolerance in rice: The Key to Improving Stress Tolerance without Yield Penalties, International Journal of Molecular Sciences, 21(5): 1807. https://doi.org/10.3390/ijms21051807 Sun C., Li D., Gao Z., Gao L., Shang L., Wang M., Qiao J., Ding S., Li C., Geisler M., Jiang D., Qi Y., and Qian Q., 2021, OsRLR4 binds to the OsAUX1 promoter to negatively regulate primary root development in rice, Journal of Integrative Plant Biology, 64(1): 118-134. https://doi.org/10.1111/jipb.13183

RkJQdWJsaXNoZXIy MjQ4ODYzNA==