Molecular Soil Biology 2025, Vol.16, No.5, 272-286 http://bioscipublisher.com/index.php/msb 285 References Abulfaraj A.A., and Jalal R.S., 2021, Use of plant growth-promoting bacteria to enhance salinity stress in soybean (Glycine max L.) plants, Saudi Journal of Biological Sciences, 28(6): 3823-3834. https://doi.org/10.1016/j.sjbs.2021.03.053 Alemneh A.A., Zhou Y., Ryder M.H., and Denton M.D., 2020, Mechanisms in plant growth-promoting rhizobacteria that enhance legume-rhizobial symbioses, Journal of Applied Microbiology, 129(5): 1133-1156. https://doi.org/10.1111/jam.14754 Al-Tawarah B., Alasasfa M., and Mahadeen A., 2024, Efficacy of compost and vermicompost on growth, yield and nutrients content of common beans crop (Phaseolus vulgaris L.), Journal of Ecological Engineering, 25(2): 215-226. https://doi.org/10.12911/22998993/176862 Amer M., Abouelsoud H., Sakher E., and Hashem A., 2023, Effect of gypsum, compost, and foliar application of some nanoparticles in improving some chemical and physical properties of soil and the yield and water productivity of faba beans in salt-affected soils, Agronomy, 13(4): 1052. https://doi.org/10.3390/agronomy13041052 Chalise K.S., Singh S., Wegner B.R., Kumar S., Perez-Gutierrez J.D., and Osborne S.L., 2019, Cover crops and returning residue impact on soil organic carbon, bulk density, penetration resistance, water retention, infiltration, and soybean yield, Agronomy Journal, 111(1): 99-108. https://doi.org/10.2134/agronj2018.03.0213 Ciampitti I.A., de Borja Reis R.A., Córdova S.C., Castellano M.J., Archontoulis S.V., Correndo A.A., Antunes De Almeida L.F. and Moro Rosso L.H., 2021, Revisiting biological nitrogen fixation dynamics in soybeans, Frontiers in Plant Science, 12: 727021. https://doi.org/10.3389/fpls.2021.727021 Clovis J.P.,Laércio J.F.,Corte L.J.B., et al., 2023, Controlled release urea increases soybean yield without compromising symbiotic nitrogen fixation, Experimental Agriculture, 59: e1. https://doi.org/10.1017/S0014479722000540 de Almeida L.R.,César M.L., França S.D.V.L.F., Barbosa E.S., Alves B.J.R., Zilli J.E., Araújo A.P., and da Conceição Jesus E., 2022, Co-inoculation of Rhizobium and Bradyrhizobium promotes growth and yield of common beans, Applied Soil Ecology, 172: 104356. https://doi.org/10.1016/J.APSOIL.2021.104356 Gangana Gowdra V.M., Lalitha B.S., Halli H.M., Senthamil E., Negi P., Jayadeva H.M., Basavaraj P.S., Harisha C.B., Boraiah K.M., Adavi S.B., Suresha P.G., Nargund R., Mohite G. and Reddy K.S., 2025, Root growth, yield and stress tolerance of soybean to transient waterlogging under different climatic regimes, Sci. Rep., 15: 6968. https://doi.org/10.1038/s41598-025-91780-9 Gao Y., Han Y., Li X., Li M., Wang C., Li Z., Wang Y., and Wang W., 2022, A salt-tolerant Streptomyces paradoxus D2-8 from rhizosphere soil of Phragmites communis augments soybean tolerance to soda saline-alkali stress, Polish Journal of Microbiology, 71(1): 43-53. https://doi.org/10.33073/pjm-2022-006 Han Q., Ma Q., Chen Y., Tian B., Xu L., Bai,Y., Chen W., and Li X., 2020, Variation in rhizosphere microbial communities and its association with the symbiotic efficiency of rhizobia in soybean, ISME Journal, 14(8): 1915-1928. https://doi.org/10.1038/s41396-020-0648-9 Kollie W.S., and Semu E., 2022, Effects of liming on nodulation, nitrogen fixation and seed protein content in soybean, East African Journal of Agriculture and Biotechnology, 5(1):253-263. Lai X., Zhu W., Liu C., Peng W., Hao Y., Wang Q., Zheng Z., and Huang Y., 2024, Isolation and screening of soybean rhizobia and their effects on soybean nodulation and plant growth in saline-alkali soil, BIO Web of Conferences, 42: 02018. https://doi.org/10.1051/bioconf/202414202018 Li Y., Li R., Ji R., Wu Y., Chen J., Wu M., and Yang J., 2024, Research on factors affecting global grain legume yield based on explainable artificial intelligence, Agriculture, 14(3): 438. https://doi.org/10.3390/agriculture14030438 Li S., Liu J., Yao Q., Yu Z., Li Y., Jin J., Liu X., and Wang G., 2021, Short-term lime application impacts microbial community composition and potential function in an acid black soil, Plant and Soil, 470: 35-50. Liu J., Cui W., Zhao Q., Ren Z., Li L., Li Y., Sun L., and Ding J., 2025, Identification, characterization, and chemical management of fusarium asiaticum causing soybean root rot in Northeast China, Agronomy, 15(2): 388-388. Ma J.B., Yu X.B., Wu H.Y., Zhang M.R., 2020, Effect of rhizobia inoculation on photosynthetic performance and nitrogen fixation capacity of soybean in southwest China, Chinese Journal of Oil Crop Sciences, 42(1): 102−108. Miljaković D., Marinković J., Ignjatov M., Tempelaar M.J., Zečević B., and Milošević D., 2022, Competitiveness of Bradyrhizobium japonicum inoculation strain for soybean nodule occupancy. Plant, Soil and Environment, 68(1): 59-64. https://doi.org/10.17221/430/2021-PSE RenT., Li Z., Du B., Zhang X., Xu Z., Gao D., Zheng B., Zhao W., Li G., Ning T., 2021, Improving photosynthetic performance and yield of summer soybean by organic fertilizer application and increasing plant density, Journal of Plant Nutrition and Fertilizers, 27(8): 1361-1375. Ren H., Zhang F., Zhu X., Lamlom S., Zhao K., Zhang B., and Wang J., 2023, Manipulating rhizosphere microorganisms to improve crop yield in saline-alkali soil: a study on soybean growth and development, Frontiers in Microbiology, 14: 1233351. https://doi.org/10.3389/fmicb.2023.1233351
RkJQdWJsaXNoZXIy MjQ4ODYzNA==