MSB_2025v16n5

Molecular Soil Biology 2025, Vol.16, No.5, 255-264 http://bioscipublisher.com/index.php/msb 263 Arous A., Gargouri K., Palese A., Pane C., Scotti R., Zaccardelli M., Altieri G., and Celano G., 2024, Microbiological soil quality indicators associated with long-term agronomical management of mediterranean fruit orchards, Agriculture, 14(9): 1527. https://doi.org/10.3390/agriculture14091527 Arwenyo B., Varco J., Dygert A., Brown S., Pittman C., and Mlsna T., 2023, Contribution of modified P-enriched biochar on pH buffering capacity of acidic soil, Journal of Environmental Management, 339: 117863. https://doi.org/10.1016/j.jenvman.2023.117863 Bao J., Cai Y., Sun M., Wang G., and Corke H., 2005, Anthocyanins, flavonols, and free radical scavenging activity of Chinese bayberry (Morella rubra) extracts and their color properties and stability, Journal of Agricultural and Food Chemistry, 53(6): 2327-2332. https://doi.org/10.1021/JF048312Z Che J., Zhao X., and Shen R., 2022, Molecular mechanisms of plant adaptation to acid soils, Pedosphere, 33(1): 14-22. https://doi.org/10.1016/j.pedsph.2022.10.001 Chen H., Ren H., Liu J., Tian Y., and Lu S., 2022, Soil acidification induced decline disease of Morella rubra: aluminum toxicity and bacterial community response analyses, Environmental Science and Pollution Research, 29: 45435-45448. https://doi.org/10.1007/s11356-022-19165-3 Deng Z., Wang J., Yan Y., Wang J., Shao W., and Wu Z., 2024, Biochar-based Bacillus subtilis inoculants promote plant growth: Regulating microbial community to improve soil properties, Journal of Environmental Management, 373: 123534. https://doi.org/10.1016/j.jenvman.2024.123534 Feng C., Chen M., Xu C., Bai L., Yin X., Li X., Allan A., Ferguson I., and Chen K., 2012, Transcriptomic analysis of Chinese bayberry (Morella rubra) fruit development and ripening using RNA-Seq, BMC Genomics, 13: 19. https://doi.org/10.1186/1471-2164-13-19 Hong L., Yao Y., Lei C., Hong C., Zhu W., Zhu F., Wang W., Lu T., and Qi X., 2023, Declined symptoms in Morella rubra: The influence of soil acidification and rhizosphere microbial communities, Scientia Horticulturae, 313: 111892. https://doi.org/10.1016/j.scienta.2023.111892 Hu W., Zhang Y., Rong X., Zhou X., Fei J., Peng J., and Luo G., 2024, Biochar and organic fertilizer applications enhance soil functional microbial abundance and agroecosystem multifunctionality, Biochar, 6: 1-17. https://doi.org/10.1007/s42773-023-00296-w Ju C., Lv J., Wu A., Wang Y., Zhu Y., and Chen J., 2022, Effect of pH on betalain–anthocyanin mixture in bayberry juice: influences on pigments, colour, and antioxidant capacity, International Journal of Food Science & Technology, 57(6): 3556-3566. https://doi.org/10.1111/ijfs.15680 Kalcsits L., Lotze E., Tagliavini M., Hannam K., Mimmo T., Neilsen D., Neilsen G., Atkinson D., Biasuz C., Borruso L., Cesco S., Fallahi E., Pii Y., and Valverdi N., 2020, Recent achievements and new research opportunities for optimizing macronutrient availability, acquisition, and distribution for perennial fruit crops, Agronomy, 10(11): 1738. https://doi.org/10.3390/agronomy10111738 Li C., Li G., Qi X., Yu Z., Abdallah Y., Ogunyemi S., Zhang S., Ren H., Mohany M., Al-Rejaie S., Li B., and Liu E., 2023, The effects of accompanying ryegrass on bayberry trees by change of soil property, rhizosphere microbial community structure, and metabolites, Plants, 12(21): 3669. https://doi.org/10.3390/plants12213669 Li G., Liu J., Tian Y., Chen H., and Ren H., 2022, Investigation and analysis of rhizosphere soil of bayberry-decline-disease plants in China, Plants, 11(23): 3394. https://doi.org/10.3390/plants11233394 Ng J., Ahmed O., Jalloh M., Omar L., Kwan Y., Musah A., and Poong K., 2022, Soil nutrient retention and ph buffering capacity are enhanced by calciprill and sodium silicate, Agronomy, 12(1): 219. https://doi.org/10.3390/agronomy12010219 Payá-Milans M., Nunez G., Olmstead J., Rinehart T., and Staton M., 2017, Regulation of gene expression in roots of the pH-sensitive Vaccinium corymbosum and the pH-tolerant Vaccinium arboreum in response to near neutral pH stress using RNA-Seq, BMC Genomics, 18: 580. https://doi.org/10.1186/s12864-017-3967-0 Ren H., Guo H., Islam M., Zaki H., Wang Z., Wang H., Qi X., Guo J., Sun L., Wang Q., Li B., Li G., and Radwan K., 2023, Improvement effect of biochar on soil microbial community structure and metabolites of decline disease bayberry, Frontiers in Microbiology, 14: 1154886. https://doi.org/10.3389/fmicb.2023.1154886 Ren H., Wang H., Qi X., Yu Z., Zheng X., Zhang S., Wang Z., Zhang M., Ahmed T., and Li B., 2021, The damage caused by decline disease in bayberry plants through changes in soil properties, rhizosphere microbial community structure and metabolites, Plants, 10(10): 2083. https://doi.org/10.3390/plants10102083 Ren H., Wang H., Wang Q., Qi X., Zhang S., Yu Z., Ijaz M., Zhang M., Ahmed T., El-Sharnouby M., Hassan M., Wang Z., and Li B., 2022, Effect of fungicides on bayberry decline disease by modulating rhizosphere soil properties, microflora, and metabolites, Agronomy, 12(3): 677. https://doi.org/10.3390/agronomy12030677 Saeed M., Zhao H., Chen Z., Ju P., Wang G., Zhou C., Jia H., Zhu C., Jia H., Jiao Y., Gao Z., and Zhao L., 2023, Wax bayberry is a suitable rootstock for Chinese red bayberry cultivated in saline-alkali soil, Scientia Horticulturae, 323: 112463. https://doi.org/10.1016/j.scienta.2023.112463

RkJQdWJsaXNoZXIy MjQ4ODYzNA==