Molecular Soil Biology 2025, Vol.16, No.5, 241-254 http://bioscipublisher.com/index.php/msb 253 Wang G., Jin Z., Wang X., George T., Feng G., and Zhang L., 2022, Simulated root exudates stimulate the abundance of Saccharimonadales to improve the alkaline phosphatase activity in maize rhizosphere, Applied Soil Ecology, 170: 104274. https://doi.org/10.1016/j.apsoil.2021.104274 Wang L., Rengel Z., Cheng L., and Shen J., 2024, Coupling phosphate type and placement promotes maize growth and phosphorus uptake by altering root properties and rhizosphere processes, Field Crops Research, 306: 109225. https://doi.org/10.1016/j.fcr.2023.109225 Wang S., Gao P., Zhang Q., Shi Y., Guo X., Lv Q., Wu W., Zhang X., Li M., and Meng Q., 2022, Application of biochar and organic fertilizer to saline‐alkali soil in the Yellow River Delta: Effects on soil water, salinity, nutrients, and maize yield, Soil Use and Management, 38: 1679-1692. https://doi.org/10.1111/sum.12829 Wang Y., Tong L., Liu H., Li B., and Zhang R., 2025, Integrated metabolome and transcriptome analysis of maize roots response to different degrees of drought stress, BMC Plant Biology, 25: 505. https://doi.org/10.1186/s12870-025-06505-x Wild A., Steiner F., Kiene M., Tyborski N., Tung S., Koehler T., Carminati A., Eder B., Groth J., Vahl W., Wolfrum S., Lueders T., Laforsch C., Mueller C., Vidal A., and Pausch J., 2024, Unraveling root and rhizosphere traits in temperate maize landraces and modern cultivars: implications for soil resource acquisition and drought adaptation, Plant, Cell & Environment, 47(7): 2524-2539. https://doi.org/10.1111/pce.14898 Xu J., Long Z., Sun B., Zhang F., Shen J., and Jin K., 2025, Optimizing root phenotypes for compacted soils: enhancing root‐soil‐microbe interactions, Plant, 48(6): 4656-4667. https://doi.org/10.1111/pce.15462 Xu X., Fan K., Li Q., Yang T., Gao G., Ma Y., Nie L., Liang W., Zhang J., and Chu H., 2024, Benefit and risk: Keystone biomes in maize rhizosphere associated with crop yield under different fertilizations, Applied Soil Ecology, 202: 105592. https://doi.org/10.1016/j.apsoil.2024.105592 Yan B., Zhang Y., Wang Y., Xiangmin R., Peng J., Feia J., and Luo G., 2023, Biochar amendments combined with organic fertilizer improve maize productivity and mitigate nutrient loss by regulating the C-N-P stoichiometry of soil, microbiome, and enzymes, Chemosphere, 324: 138293. https://doi.org/10.1016/j.chemosphere.2023.138293 Yim B., Ibrahim Z., Rüger L., Ganther M., Maccario L., Sørensen S., Heintz‐Buschart A., Tarkka M., Vetterlein D., Bonkowski M., Blagodatskaya E., and Smalla K., 2022, Soil texture is a stronger driver of the maize rhizosphere microbiome and extracellular enzyme activities than soil depth or the presence of root hairs, Plant and Soil, 478: 229-251. https://doi.org/10.1007/s11104-022-05618-8 Yu P., He X., Baer M., Beirinckx S., Tian T., Moya Y., Zhang X., Deichmann M., Frey F., Bresgen V., Li C., Razavi B., Schaaf G., Von Wirén N., Su Z., Bucher M., Tsuda K., Goormachtig S., Chen X., and Hochholdinger F., 2021, Plant flavones enrich rhizosphere Oxalobacteraceae to improve maize performance under nitrogen deprivation, Nature Plants, 7: 481-499. https://doi.org/10.1038/s41477-021-00897-y Yu Z., Wang H., Yu D., Yin N., and Zhang J., 2024, The effect of aeration and irrigation on the improvement of soil environment and yield in dryland maize, Frontiers in Plant Science, 15: 1464624. https://doi.org/10.3389/fpls.2024.1464624 Yuan A., Kumar S., Wang H., Wang S., Impa S., Wang H., Guo J., Wang Y., Yang Q., Liu X., Sv K., and Shao R., 2024, Dynamic interplay among soil nutrients, rhizosphere metabolites, and microbes shape drought and heat stress responses in summer maize, Soil Biology and Biochemistry, 191: 109357. https://doi.org/10.1016/j.soilbio.2024.109357 Zhang A., Wang X., Zhang D., Dong Z., Ji H., and Li H., 2023, Localized nutrient supply promotes maize growth and nutrient acquisition by shaping root morphology and physiology and mycorrhizal symbiosis, Soil and Tillage Research, 225: 105550. https://doi.org/10.1016/j.still.2022.105550 Zhang L., Yuan L., Wen Y., Zhang M., Huang S., Wang S., Zhao Y., Hao X., Li L., Gao Q., Wang Y., Zhang S., Huang S., Liu K., Yu X., Li D., Xu J., Zhao B., Zhang L., Zhang H., Zhou W., and Ai C., 2024, Maize functional requirements drive the selection of rhizobacteria under long-term fertilization practices, The New Phytologist, 242(3): 1275-1288. https://doi.org/10.1111/nph.19653 Zhang X., Bilyera N., Fan L., Duddek P., Ahmed M., Carminati A., Kaestner A., Dippold M., Spielvogel S., and Razavi B., 2022, The spatial distribution of rhizosphere microbial activities under drought: water availability is more important than root-hair-controlled exudation, The New Phytologist, 237(3): 780-792. https://doi.org/10.1111/nph.18409 Zhang Y., Yan J., Rong X., Han Y., Yang Z., Hou K., Zhao H., and Hu W., 2021, Responses of maize yield, nitrogen and phosphorus runoff losses and soil properties to biochar and organic fertilizer application in a light-loamy fluvo-aquic soil, Agriculture, Ecosystems & Environment, 314: 107433. https://doi.org/10.1016/J.AGEE.2021.107433 Zhou J., Zhang L., Feng G., and George T., 2022, Arbuscular mycorrhizal fungi have a greater role than root hairs of maize for priming the rhizosphere microbial community and enhancing rhizosphere organic P mineralization, Soil Biology and Biochemistry, 171: 108713. https://doi.org/10.1016/j.soilbio.2022.108713
RkJQdWJsaXNoZXIy MjQ4ODYzNA==