MSB_2025v16n5

Molecular Soil Biology 2025, Vol.16, No.5, 241-254 http://bioscipublisher.com/index.php/msb 252 Phalempin M., Lippold E., Vetterlein D., and Schlüter S., 2021, Soil texture and structure heterogeneity predominantly governs bulk density gradients around roots, Vadose Zone Journal, 20(5): e20147. https://doi.org/10.1002/vzj2.20147 Protto V., Bauget F., Rishmawi L., Nacry P., and Maurel C., 2024, Primary, seminal and lateral roots of maize show type-specific growth and hydraulic responses to water deficit, Plant Physiology, 194: 2564-2579. https://doi.org/10.1093/plphys/kiad675 Rishmawi L., Bauget F., Protto V., Bauland C., Nacry P., and Maurel C., 2023, Natural variation of maize root hydraulic architecture underlies highly diverse water uptake capacities, Plant Physiology, 192: 2404-2418. https://doi.org/10.1093/plphys/kiad213 Rivas M., Friero I., Alarcón M., and Salguero J., 2022, Auxin-cytokinin balance shapes maize root architecture by controlling primary root elongation and lateral root development, Frontiers in Plant Science, 13: 836592. https://doi.org/10.3389/fpls.2022.836592 Romero-Munar A., Aroca R., Zamarreño Á., García-Mina J., Perez-Hernández N., and Ruiz-Lozano J., 2023, Dual inoculation with rhizophagus irregularis and bacillus megaterium improves maize tolerance to combined drought and high temperature stress by enhancing root hydraulics, photosynthesis and hormonal responses, International Journal of Molecular Sciences, 24(6): 5193. https://doi.org/10.3390/ijms24065193 Rut G., Grzesiak M., Maksymowicz A., Jurczyk B., Rzepka A., Hura K., and Grzesiak S., 2021, Responses of a root system structure to soil compaction stress among maize ( Zea mays L .) hybrids, Journal of Agronomy and Crop Science, 208(1): 106-119. https://doi.org/10.1111/jac.12530 Schwerdtner U., and Spohn M., 2022, Plant species interactions in the rhizosphere increase maize N and P acquisition and maize yields in intercropping, Journal of Soil Science and Plant Nutrition, 22: 3868-3884. https://doi.org/10.1007/s42729-022-00936-3 Sciarresi C., Thies A., Topp C., Eudy D., Kovar J., Trifunović S., Dixon P., and Archontoulis S., 2025, Breeding for high maize yields indirectly boosting root carbon in the US Corn Belt since the 1980s, Field Crops Research, 323: 109774. https://doi.org/10.1016/j.fcr.2025.109774 Serna L., 2022, Maize stomatal responses against the climate change, Frontiers in Plant Science, 13: 952146. https://doi.org/10.3389/fpls.2022.952146 Sheoran S., Kaur Y., Kumar S., Shukla S., Rakshit S., and Kumar R., 2022, Recent advances for drought stress tolerance in maize (Zea mays L.): present status and future prospects, Frontiers in Plant Science, 13: 872566. https://doi.org/10.3389/fpls.2022.872566 Shi J., Zhao B., Zhao L., Zha Y., Yu X., Yu B., Luo L., Wu J., and Yue E., 2024, Facilitating growth of maize (Zea mays L.) by biostimulants: a perspective from the interaction between root transcriptome and rhizosphere microbiome, Journal of Agricultural and Food Chemistry, 72: 3415-3426. https://doi.org/10.1021/acs.jafc.3c09062 Shi S., Cheng S., Tao D., Van Der Heijden M., Trivedi P., Baquerizo M., and Liu M., 2025, Maize growth as a function of cover crop-mediated soil microbiome, The New Phytologist, 248(2): 872-885. https://doi.org/10.1111/nph.70460 Sirisuntornlak N., Ullah H., Sonjaroon W., Anusontpornperm S., Arirob W., and Datta A., 2020, Interactive effects of silicon and soil pH on growth, yield and nutrient uptake of maize, Silicon, 1-11. https://doi.org/10.1007/s12633-020-00427-z Sun H., Jiang S., Jiang C., Wu C., Gao M., and Wang Q., 2021, A review of root exudates and rhizosphere microbiome for crop production, Environmental Science and Pollution Research, 28: 54497-54510. https://doi.org/10.1007/s11356-021-15838-7 Swift J., Kolp M., Carmichael A., Ford N., Hansen P., Sikes B., Kleiner M., and Wagner M., 2024, Drought stress homogenizes maize growth responses to diverse natural soil microbiomes, Plant and Soil, 509: 181-199. https://doi.org/10.1007/s11104-024-06853-x Tang H., Chen X., Gao Y., Hong L., and Chen Y., 2020, Alteration in root morphological and physiological traits of two maize cultivars in response to phosphorus deficiency, Rhizosphere, 14: 100201. https://doi.org/10.1016/j.rhisph.2020.100201 Teressa D., Kibret K., Dechasa N., and Wogi L., 2024, Soil properties and nutrient uptake of maize (Zea mays) as influenced by mixed manure and blended inorganic fertilizer in Haramaya district, eastern Ethiopia, Heliyon, 10(16): e35784. https://doi.org/10.1016/j.heliyon.2024.e35784 Wahid F., Fahad S., Danish S., Adnan M., Yue Z., Saud S., Siddiqui M., BrtnickýM., Hammerschmiedt T., and Datta R., 2020, Sustainable management with mycorrhizae and phosphate solubilizing bacteria for enhanced phosphorus uptake in calcareous soils, Agriculture, 10(8): 334. https://doi.org/10.3390/agriculture10080334 Wang C., Tai H., Chen Y., Zhai Z., Zhang L., Pu Z., Zhang M., Li C., and Xie Z., 2024, Soil microbiota modulates root transcriptome with divergent effect on maize growth under low and high phosphorus inputs, Plant, Cell & Environment, 48(3): 2132-2144. https://doi.org/10.1111/pce.15281

RkJQdWJsaXNoZXIy MjQ4ODYzNA==